THE ROLE OF FATS IN FOOD

GEOFF TALBOT
THE FAT CONSULTANT

THE BIG FAT DEBATE
Institute of Food Science and technology
20 September 2016
MELTING AND CRYSTALLISATION

• Chocolate
 • Hard at ambient temperature
 • Molten at mouth temperature
 • Polymorphic fats – need to be ‘tempered’
• Confectionery fillings
 • Steep melting – cool melting
• Margarines and Spreads
 • Fast crystallisation to allow solidification after depositing
• Ice cream
 • >50% solid fat at 0°C
 • Molten at mouth temperature
 • Ageing/hardening process dependent on crystallisation of fat phase
TEXTURE

• Shortness in biscuits and pastry
 • The more fat present the ‘shorter’ the texture
 • Fat coats flour and inhibits gluten formation

• Emulsions
 • Fats give creamy texture to mayonnaise, ice cream etc
 • Oil-in-water emulsions
 • Butter
 • Margarines and spreads
 • Water-in-oil emulsions
 • Milk, cream
 • Mayonnaise
 • Salad dressings
AERATION

• Whipped creams (dairy and non-dairy)
 • Fat crystallises around the air bubbles
• Cake batters
 • Fat crystallises around the air bubbles protecting them during early stages of baking
• Bread doughs
 • High melting fats hold the risen structure in place during early stages of baking
HEAT TRANSFER AND LUBRICATION

• Frying
 • Frying oils act as a heat transfer medium to the foods being fried
 • Controllable in terms of temperature to get different fried effects, colour, texture etc

• Lubrication
 • Machine oils and bread dough dividers
 • Vegetable alternative to mineral oils
 • Mouth lubrication
 • High fat foods have a creaminess and lubrication when consumed that makes them easier to digest
APPEARANCE AND FLAVOUR

• Chocolate and confectionery coatings
 • Imparts gloss
 • Can also affect or inhibit bloom formation
• Fat-soluble flavours
 • Mint, orange oil, lemon oil
• Infused oils
 • Garlic infused olive oil
 • Chilli infused olive oil
• Flavours produced during frying, baking
• Off-flavours due to oxidation, hydrolysis