Emerging science and innovation: Impact on food consumption and dietary pattern

P. Klassen Wigger, PhD
Head of Nutrition, Health and Wellness Unit, Nestlé Research
Agenda

▪ Background:
 ▪ Socio-demographic trends
 ▪ Nutritional Sciences Evolution
 ▪ Consumer Trends
 ▪ Opportunities and Challenges
 ▪ Solutions and Impact
 ▪ Conclusions
Socio-demographic trends influencing the food demand

Demographic and social changes
- POPULATION GROWTH
- URBANISATION
- AGEING & HEALTH CONCERNS
- POVERTY vs SUPER RICH
- INFORMATION & DIGITAL

Impact on nutrition and food demand
- FOOD SHORTAGE & NUTR. UNBALANCE
- CHALLENGING SUPPLY CHAIN
- PERSONALIZED DIET
- IMPORTANCE OF AFFORDABILITY
- CHANGING CONSUMER BEHAV.
Explosion of Scientific Publications

Source: PubMed
Trends in Nutrition Science

- Personalized Diets
- Food Microbiome Host Interaction
- Food Security
- Diet and Gene interaction
- Ageing, Metabolism, chronic diseases
- Bioengineering, Diagnostics
Today Consumers have evolved

Moving from basic nutrition to functional benefits

Reduced sugar High-protein More veggies Gut Health Alertness, Energy

From I “think” it’s right for me (feel better) moving to I “know” it’s right for me

Gluten-free Lactose-free Vegans/Keto/Paleo Personalized Nutrition
Home-testing kits let consumers take a proactive approach on their health

For a smarter gut

uBiome is a biotechnology company based in the US that offers consumers the opportunity to test their gut microbiome.

Personalized nutrition

Habit provides a personalized nutrition plan based on the results of at-home DNA and metabolism tests.

Precision supplementation

Omega Quant offers an Omega-3 blood test and provides consumers with actionable and personalized recommendations for EPA+DHA intakes.

Ref. Mintel Insight report, 2018
Consumers care about the taste of the products they buy

Taste continues to have the greatest impact on the decision to buy food and beverages. Sustainability is up from 2015.

How much of an impact do the following have on your decision to buy foods and beverages? (% Rating 4 to 5 on 5-point scale, from No Impact to A Great Impact)

Basis: 1,003 Americans aged from 18 to 80
Agenda

- Background:
 - Socio-demographic trends
 - Nutritional Sciences Evolution
 - Consumer Trends
- Opportunities and Challenges
- Impact
- Conclusions
Nutrition: Challenges in (re)formulation

- Food safety & quality
- Health & nutritional value
- Consumer acceptance
- Taste
- Texture
- Cost
- Supply chain
- Handling & processability
Meeting consumer expectations and public health needs: Example salt reduction

Plain salt reduction / Step reduction
Consumers adaptation to lower saltiness

Sodium redistribution in Food matrix
Maximizing salt release from the matrix to the taste buds

Ingredients to replace salt:
e.g. Potassium chloride based salts
Or modulate saltiness

Taste compensation by culinary expertise
e.g. with umami, acidity, herbs & spices

High

Low
Optimizing Salt Distribution

Frozen Pizza

Salt-coated corn-meal

The artisanal touch of corn meal at the bottom of the crust is leveraged to maximize saltiness perception.

Salt crystals

Corn meal
Sodium Reduction Journey Started in 2005

Reduce sodium in relevant products to help consumers achieve a daily sodium intake of 2'400 mg. By the end of 2012, more than 22% sodium reduction achieved (equivalent to 13'500 mT of salt) in culinary foods.

Pledge to further accelerate sodium reduction to help consumers achieve the WHO sodium goal of daily intake of 2'000 mg by 2025. Commitment to reduce sodium levels by at least 10% in products that are not aligned with our sodium targets based on the WHO recommendation of 2'000 mg daily intake. More than 10% reduction achieved.

Commitment to reduce sodium levels by at least 10% in products that are not aligned with our sodium targets based on the WHO recommendation of 2'000 mg daily intake.
Reducing fat
Creating creaminess through protein aggregation

Controlled aggregation of dairy proteins provide a creamy mouthfeel similar to oil droplets. This allows to increase creaminess while simultaneously reducing the fat content.
Reducing sugar
Smart structuration of sugar for fast dissolution

Aerated sugar particles dissolve more quickly on your tongue and deliver the sweet sensation with significantly lower sucrose level.
Meat alternatives
Delivering taste, texture and nutrition

Providing natural vegan solutions through a combination of texturized plant proteins and vegetable fats.
The Challenge of Fortification

- Good Taste
- Bioavailability
- Stability & Homogeneity in Products
- Cost
Technical Challenge: Color Stability in local preparations

Highly reactive iron compounds in bouillon may lead to organoleptic constraints (e.g., color and taste)

Not fortified Fortified with Ferrous Sulfate Fortified with Ferric Pyrophosphate

1Habeych et al. 2016. Food Res. Int. 88, 122-128
 Bioav. 2018
Stable Iron Fortificant – Collaboration with ETH Zürich

Stability

Fe: Iron (III)

Phytic Acid

Amino Acid(s)

FeSO₄

FePP

Fe:PA:HCP

Relative Iron Bioavailability (RBV)

\[\% \text{ RBV} = \frac{\text{Compound X} (\%)}{\text{FeSO}_4 (\%)} \]

- New iron compound has **high stability** and **bioavailability 5x higher** than current fortificant with an inhibitory meal

- **>3x more** effective to reduce the Health and Economical burden (DALY) in Ivory Coast
Agenda

- Background:
 - Socio-demographic trends
 - Nutritional Sciences Evolution
 - Consumer Trends
- Opportunities and Challenges
- Impact
- Conclusions
Health and economic impact of reducing public health sensitive nutrients

PREDICT FUTURE WITH MODEL
predictive modelling based on available data & evidence

Step 1
Nutrition epidemiology: link between public health sensitive nutrients and health outcomes

Step 2
Reformulation ★★★★★ Change intake
Tax, Marketing ban
Education, Limit availability, etc.

Step 3
Healthy years: QALYs
Health & Economic Impact
Healthcare costs $$$$
Modeled dietary impact of industry-wide food and beverage reformulations in the United States and France

Mathilde Gressier,1 Lisa Privet,2 Kevin Clark Mathias,1 Antonis Vlassopoulos,1 Florent Vieux,2 and Gabriel Masset1

1Nestlé Research Center, Lausanne, Switzerland; and 2MS-Nutrition, Unité Mixte de Recherche, Nutrition, Obesity, and Thrombotic Risk Research Unit, Timone Medical School, Marseille, France
Potential changes in dietary intakes for the US and French population applying the Nestlé Nutritional Profiling System to the food supply

Reformulation: nutrient content of foods and beverages adjusted to the NNPS standards (if they were not met)

Substitution: products not meeting the standards were replaced by the most nutritionally similar alternative meeting the standards from the same category

<table>
<thead>
<tr>
<th></th>
<th>Adults (≥18 y) (n = 5076)</th>
<th>Children and adolescents (4–17 y) (n = 2380)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Reformulation</td>
</tr>
<tr>
<td>Added sugars, g/d</td>
<td>77.6 ± 1.7<sup>a</sup></td>
<td>48.1 ± 0.98<sup>b</sup></td>
</tr>
<tr>
<td>Sodium, mg/d</td>
<td>3618 ± 26.2<sup>a</sup></td>
<td>3213 ± 25.23<sup>b</sup></td>
</tr>
<tr>
<td>Added sugars, g/d</td>
<td>45.4 ± 0.73<sup>a</sup></td>
<td>36.0 ± 0.52<sup>b</sup></td>
</tr>
<tr>
<td>Sodium, mg/d</td>
<td>3153 ± 24.4<sup>a</sup></td>
<td>2809 ± 21.7<sup>b</sup></td>
</tr>
</tbody>
</table>
ORIGINAL ARTICLE

An assessment of the potential health impacts of food reformulation

P Leroy¹, V Rêquillart², L-G Soler¹ and G Enderli¹

BACKGROUND/OBJECTIVES: Policies focused on food quality are intended to facilitate healthy choices by consumers, even those who are not fully informed about the links between food consumption and health. The goal of this paper is to evaluate the potential impact of such a food reformulation scenario on health outcomes.

SUBJECTS/METHODS: We first created reformulation scenarios adapted to the French characteristics of foods. After computing the changes in the nutrient intakes of representative consumers, we determined the health effects of these changes. To do so, we used the DIETRON health assessment model, which calculates the number of deaths avoided by changes in food and nutrient intakes.

RESULTS: Depending on the reformulation scenario, the total impact of reformulation varies between 2406 and 3597 avoided deaths per year, which amounts to a 3.7–5.5% reduction in mortality linked to diseases considered in the DIETRON model. The impacts are much higher for men than for women and much higher for low-income categories than for high-income categories. These differences result from the differences in consumption patterns and initial disease prevalence among the various income categories.

CONCLUSIONS: Even without any changes in consumers’ behaviors, realistic food reformulation may have significant health outcomes.

European Journal of Clinical Nutrition (2016) 70, 694–699; doi:10.1038/ejcn.2015.201; published online 16 December 2015
Agenda

▪ Background:
 ▪ Socio-demographic trends
 ▪ Nutritional Sciences Evolution
 ▪ Consumer Trends
 ▪ Opportunities and Challenges
 ▪ Impact

▪ Conclusions
Conclusions

- Technological innovations and demographic trends influence strongly the food demand

- Nutrition, Health and Wellness has become an important driver for consumers’ food choices, providing opportunities to improve diets towards recommended intakes

- Technology can provide solutions to some of the major public health concerns

- Reformulation can be an effective way to improve public health