

IFST LECTURE 2019 ULTRA-PROCESSED FOODS THE SCIENCE AND THE POLICY

Guest speaker: Professor Michael Gibney MAgrSc, MA, PhD

SPONSORS:

leatherhead food research

SPONSORS:

leatherhead food research

WELCOME

Jon Poole, Chief Executive, IFST

IFST'S CORPORATE SUPPORTERS:

IFIS food and health information

WELCOME

Northern Ireland Branch – Moy Park

Scotland Branch - SSERC

Eastern Branch– Quadram Institute

International participants

SPONSORS:

leatherhead food research

Remember to Tweet your questions to #IFSTlecture

Remember to Tweet your questions to #IFSTlecture

THANK YOU TO OUR SPONSORS

food & drink federation passionate about food & drink

leatherhead food research

Remember to Tweet your questions to #IFSTlecture

IFST LECTURE 2019 ULTRA-PROCESSED FOODS THE SCIENCE AND THE POLICY

Guest speaker: Professor Michael Gibney MAgrSc, MA, PhD

SPONSORS:

leatherhead food research

Remember to Tweet your questions to #IFSTlecture

UCD Institute of Food & Health

Ultra-processed foods: The science and the policy

Mike Gibney UCD Institute of Food & Health University College Dublin Ireland <u>mike.gibney@ucd.ie</u>

Declaration of interests

Paid and non-paid consultancy to industry, government and NGOs

<u>My opinions on ultra-processed foods are my own and</u> <u>my work in this field is 100% free of industry links</u>

goodfood

k ingredient, dish, keyword... Search

Recipes How to Lifestyle & events More Good Food Mother's Day Reviews

Treat all processed foods like cigarettes By Joanna Blythman f (2) (2) (2) (2)

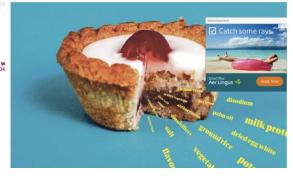
Junk food is making us ill – it's time for governments to take decisive action to protect public health, says Good Food contributing editor Joanna Blythman.

These 'Ultra-Processed' Foods Are Ruining Our Diet, Say Researchers

Health » Food | Fitness | Wellness | Parenting | Live Longer

Ultra-processed foods linked to increased cancer risk

By Jen Christensen, CNN ① Updated 1924 GMT (0324 HKT) February 28, 2018


Contribute -	Subscribe →				Guardian	
Support The Guardian Available for everyone, funded by readers				Search jobs	Guardian	

Fashion Food Recipes Love & sex Health & fitness Home & garden Women Men Family Travel Money

Nutrition WI

What is Britain eating? The ultraprocessed truth about 10 of our bestselling foods

Ultra-processed food and drink products in Latin America: Trends, impact on obesity, policy implications

Pan American Health Organization World Health Organization

...... DIETARY GUIDELINES FOR THE BRAZILIAN POPULATION

foods are chosen, it is important to consult the labels on the foods to opt for those with a lower content of salt or sugar.

ULTRA-PROCESSED FOODS

Avoid ultra-processed foods

Because of their ingredients, ultra-processed foods—such as packaged snacks, soft drinks, and instant noodles—are nutritionally unbalanced. As a result of their formulation and presentation, they tend to be consumed in excess, and displace natural or minimally processed foods. Their means of production, distribution, marketing, and consumption damage culture, social life, and the environment.

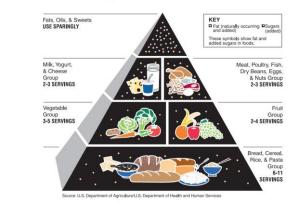
Ultra-processed foods include biscuits, packaged snacks, soft drinks, and instant noodles

The fundamental point of the NOVA Classification of ultra processed foods (UPF)

"The **most important factor** now, when considering food, nutrition and public health, is **not nutrients**, and is **not foods**, so much as what is done to foodstuffs and the nutrients originally contained in them, before they are purchased and consumed. That is to say, **the issue is food processing** – or, to be more precise, the nature, extent and purpose of processing, and what happens to food and to us as a result of processing"

The truth about nutrients and disease

Dietary lipids, LDL/HDL ratio & CVD Na, K & Hypertension Carotenoids and ARMD Folic acid & NTD **Ca, Vitamin D and Osteoporosis EPA**, **DHA** & cognition Perinatal diet and adult NCD Nitrosamines and colon cancer lodine and childhood IQ Sugar & dental caries **Glutamine and carcinogenesis**


The derivation of food based dietary guidelines

中国营养学会

9 Nordic Diet-Inspired Dishes

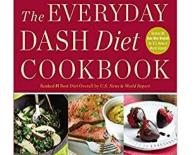
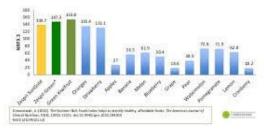
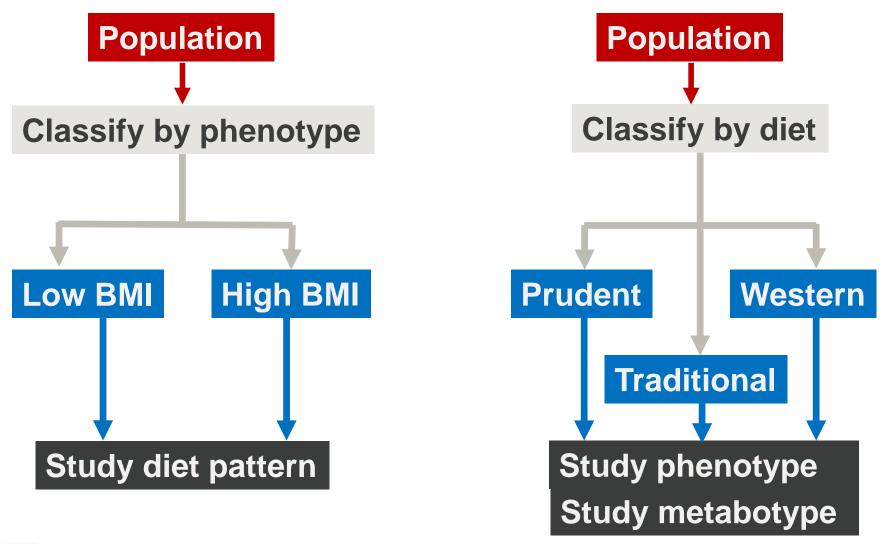



Figure 1

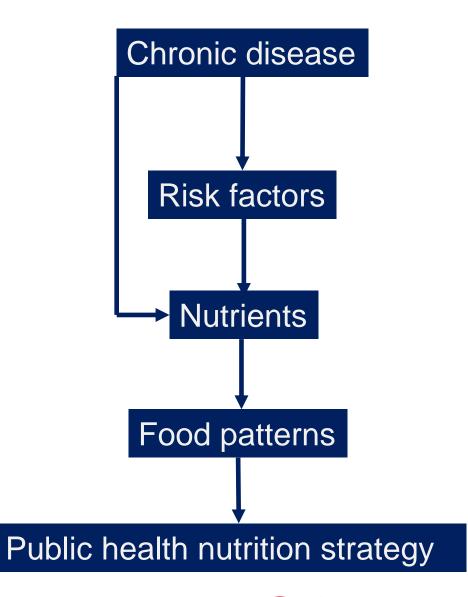
Food Guide Pyramid


Over 150 Fresh and Delicious Recipes to Speed Weight Loss, Lower Blood Pressure, and Prevent Diabetes MARLA HELLER, MS, RD Are took from Stending Autor of the Area Inst. Actions From With RICE RODGERS

Nutrient Rich Food Index NRF9.3_{RACC}



UCD Institute of Food & Health



Studying sub-group dietary patterns

Defining processed food

United States Department of Agriculture European Prospective Investigation of Diet and Cancer International Food Information Council

www.nature.com/ejcn

ORIGINAL ARTICLE

Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study

Results: Highly processed foods were an important source of the nutrients considered. Only two nutrients, b-carotene and vitamin C had a contribution from highly processed foods below 50% whereas for the other nutrients, the contribution varied from 50 to 91%

npg

<u>J Nutr</u>. 2012 Nov; 142(11): 2065S–2072S. Published online 2012 Sep 18. doi: [<u>10.3945/jn.112.164442</u>] PMCID: PMC3593301 PMID: <u>22990468</u>

Contributions of Processed Foods to Dietary Intake in the US from 2003– 2008: A Report of the Food and Nutrition Science Solutions Joint Task Force of the Academy of Nutrition and Dietetics, American Society for Nutrition, Institute of Food Technologists, and International Food Information Council^{1,2,3,4}

Heather A. Eicher-Miller,^{5,*} Victor L. Fulgoni, III,⁶ and Debra R. Keast⁷

<u>J Nutr</u>. 2012 Nov; 142(11): 2065S–2072S. Published online 2012 Sep 18. doi: [<u>10.3945/jn.112.164442</u>] PMCID: PMC3593301 PMID: <u>22990468</u>

Contributions of Processed Foods to Dietary Intake in the US from 2003– 2008: A Report of the Food and Nutrition Science Solutions Joint Task Force of the Academy of Nutrition and Dietetics, American Society for Nutrition, Institute of Food Technologists, and International Food Information Council^{1,2,3,4}

Heather A. Eicher-Miller,^{5,*} Victor L. Fulgoni, III,⁶ and Debra R. Keast⁷

The processing level was a **minor determinant** of individual foods' **nutrient contribution** to the diet and, therefore, should **not be a primary factor** when selecting a **balanced** diet.

The NOVA classification of ultra-processed foods

UCD Institute of Food & Health

Group 1: Unprocessed foods: 18% of energy intake

Group 2: Culinary ingredients: 2% of energy intake

Group 3: Processed foods: 20% of energy intake

Group 4: Ultra processed foods: 60% of energy intake

Ultra-processed products

Examples of typical ultra-processed products are:

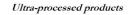
Carbonated drinks

Sweet or savoury packaged snacks Ice-cream

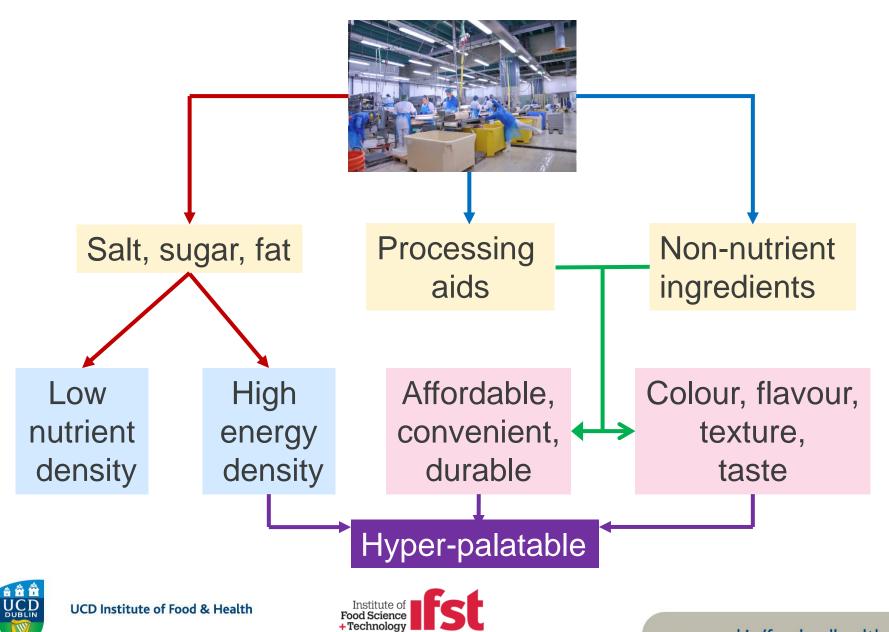
Chocolate, candies (confectionery)

Mass-produced packaged breads and buns Margarines and spreads

Cookies (biscuits), pastries, cakes, and cake Breakfast 'cereals', 'cereal' and 'energy' bars


Energy' drinks

Milk drinks


Fruit' yoghurts and 'fruit' drinks; cocoa drinks Meat and chicken extracts and 'instant' sauces Infant formulas, follow-on milks, other baby products Pre-prepared pies and pasta and pizza dishes Poultry and fish 'nuggets' and 'sticks' Sausages, burgers, hot dogs, Instant soups, noodles and desserts.

JAMA Pediatrics March 2017 Volume 171, Number 3

VIEWPOINT

Robert H. Lustig, MD, MSL

Department of Pediatrics, University of California, San Francisco; and Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco.

Corresponding

Author: Robert H. Lustig, MD, MSL, Division of Pediatric Endocrinology, University of California, San Francisco, 550 16th St, PO Box 0434, San Francisco, CA 94143 (rlustig@ucsf.edu).

Processed Food—An Experiment That Failed

Those of us who have participated in science know that 9 of every 10 experiments are failures. Now imagine that the last 50 years has been a grand clinical research experiment, with the American population as unwitting participants, conducted by 10 principal investigators—Coca-Cola, Pepsico, Kraft, Unilever, General Mills, Nestlé, Mars, Kellogg, Proctor & Gamble, and Johnson & Johnson. In 1965, these corporations posed the hypothesis that processed food is better than real food. To determine if the experiment was a success or a failure, we have to examine the outcome variables. In this case, there are 4: food consumption, health/disease, environment, and cash flow, divided into companies, consumers, and society.

Processed food is defined by 7 food engineering criteria; it is mass produced, is consistent batch to batch, is consistent country to country, uses specialized ingredients from specialized companies, consists of prefrozen macronutrients, stays emulsified, and has long shelf life or freezer life.¹

Furthermore, 11 nutritional properties distinguish processed food.² (1) Too little fiber. When fiber (soluble and insoluble) is consumed within food, it forms a gelatinous barrier along the intestinal wall. This delays the intestine's ability to absorb nutrients, instead feeding the gut microbiome. Attenuation of the glucose rise results in insulin reduction. Attenuation of fructose absorption reduces liver fat accumulation. (2) and (3) Too few ω -3 and too many ω -6 fatty acids. ω-3s are precursors to docahexaenoic and eicosapentanoic acids (anti-inflammatory). Conversely, ω-6s are precursors of arachidonic acid (proinflammatory). Our ratio of ω -6 to ω -3 fatty acids should be approximately 1:1. Currently, our ratio is about 25:1, favoring a proinflammatory state, which can drive oxidative stress and cell damage. (4) Too few micronutrients. Antioxidants, such as vitamins C and E, quench oxygen radicals in peroxisomes to prevent cellular damage, while others, such as carotenoids and a-lipoic acid, prevent lipid peroxidation. (5) Too many

 \times

- Mass produced
- Consistent batch to batch
- Consistent country by country
- Uses specialised ingredients from specialised companies
- Consists of pre-frozen macronutrients
- Stays emulsified
- * Long shelf life or freezer life

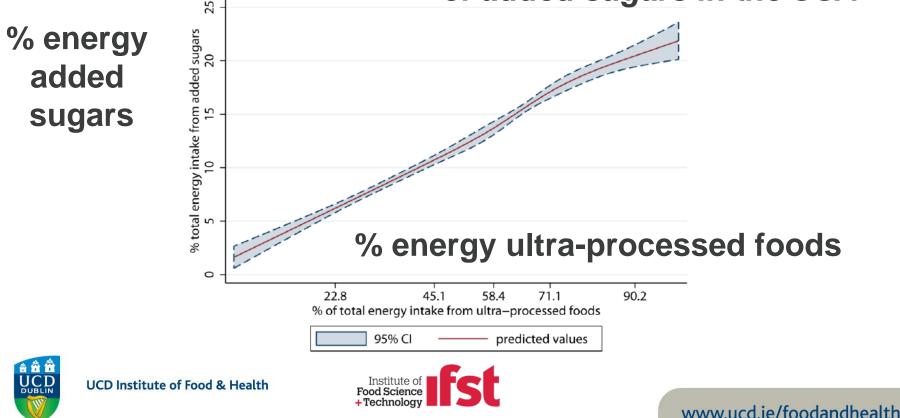
JOANNA BLYTHMAN **SWALLOW** THIS

SERVING UP THE FOOD INDUSTRY'S DARKEST SECRETS

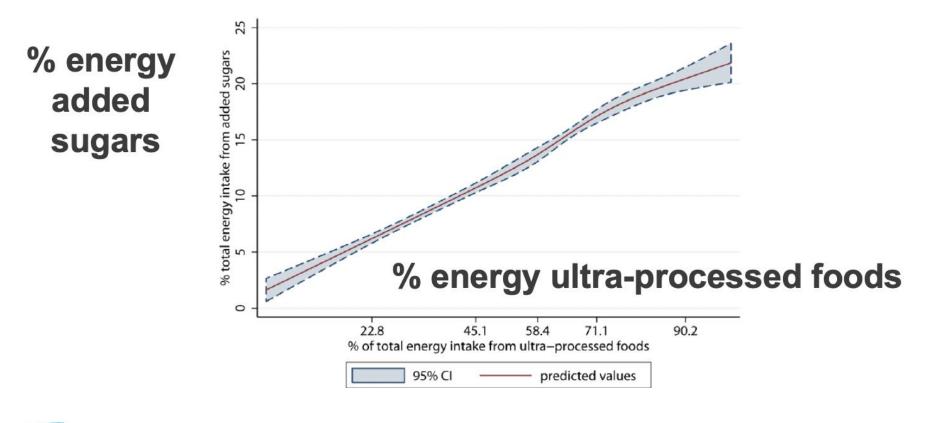
Probing the role of ultra-processed foods on nutrient intake

Part 1: US added sugar intake data

UCD Institute of Food & Health



Open Access


BMJ Open Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study

> Eurídice Martínez Steele,^{1,2} Larissa Galastri Baraldi,^{1,2} Maria Laura da Costa Louzada,^{1,2} Jean-Claude Moubarac,² Dariush Mozaffarian,³ Carlos Augusto Monteiro^{1,2}

"Decreasing the consumption of ultra-processed foods could be an effective way of reducing the excessive intake of added sugars in the USA"

All ultra-processed foods 90% of added sugar intake

Food	% contribution to added sugars	Food	% contribution to added sugars				
All ultra-processed foods 90% of added sugar intake							
These are the 16 food groups listed as sources of added sugars from ultra- processed foods							
SSBs	SBs 17.1 Milk-based drinks		4.6				
Fruit drinks	13.9	Sauces, dressings	2.8				
Cakes, cookies, pies	11.2	RTE Pizza	1.4				
Breads	7.6	Salty snacks	0.7				
Desserts	7.3	Frozen meals	0.7				
Sweet snacks	7.1	Sandwiches, buns etc.	0.6				
RTE cereals	6.4	Instant & canned soups	0.1				
Ice cream & ice pops	5.9	Others	1.2				

Article

Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars

Regan L. Bailey ^{1,*}^(D), Victor L. Fulgoni, III ², Alexandra E. Cowan ³ and P. Courtney Gaine ⁴

- ¹ Department of Nutrition Science, Purdue University, Stone Hall, Room 143A, 700 West State Street, West Lafayette, IN 47906, USA
- ² Nutrition Impact LLC, 9725 D Drive North, Battle Creek, MI 49014, USA; vic3rd@aol.com
- ³ Department of Nutrition Science, Purdue University, Room 143, 700 West State Street, West Lafayette, IN 47906, USA; cowan9@purdue.edu
- 4 The Sugar Association. Inc., 1300 L. Street, NW. Suite 1001, Washington, DC 20005, USA: gaine@sugar.org

5. Conclusions

Public health efforts to reduce intake of added sugars should put the greatest emphasis on decreasing the amount of sweetened beverages consumed first and foremost, followed by sweet bakery products. Depending on age, specific messaging about intakes of candy and other desserts is warranted. Food manufacturers should also be encouraged to decrease the added sugars content

Data on adults

Article

Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars

Regan L. Bailey ¹, *^(D), Victor L. Fulgoni, III ², Alexandra E. Cowan ³ and P. Courtney Gaine ⁴

Percentile of added sugar in diet	Contribution of SSB's to added sugar intake	
Top 10%	51	
Mid-point	15	
Lowest 10%	11	

MDPI

Article Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars

Regan L. Bailey ¹,*⁽²⁾, Victor L. Fulgoni, III ², Alexandra E. Cowan ³ and P. Courtney Gaine ⁴

Yes = Food listed in UPF paper and found in top 10 foods in decile paper No = Food listed in UPF paper and NOT found in top 10 foods in decile paper

Food	Included in top decile in any age group	Food	Included in top decile in any age group
SSBs	Yes	Milk-based drinks	No
Fruit drinks	Yes	Sauces, dressings	No
Cakes, cookies, pies	Yes	RTE Pizza	No
Breads	Yes	Salty snacks	Νο
Desserts	Yes	Frozen meals	No
Sweet snacks	Yes	Sandwiches, buns etc.	Νο
RTE cereals	No	Instant & canned soups	No
Ice cream & ice pops	No	Others	Νο

Probing the role of ultra-processed foods on nutrient intake

Part 2: Fats, SFAs, added sugars, fibre and sodium

PERSPECTIVES AND OPINION

CURRENT DEVELOPMENTS IN NUTRITION

Ultra-Processed Foods: Definitions and Policy Issues

Michael J Gibney

Institute of Food and Health, University College Dublin, Dublin, Ireland

The definitions of ultra-processed foods varies considerably over time The foods included in the definition also vary over time

PERSPECTIVES AND OPINION

CURRENT DEVELOPMENTS IN NUTRITION

Ultra-Processed Foods: Definitions and Policy Issues

Michael J Gibney ២

Institute of Food and Health, University College Dublin, Dublin, Ireland

The definitions of ultra-processed foods varies considerably over time

The foods included in the definition also vary over time

- Increasing intakes of ultra-processed foods
 - Predict intakes of sugar and fiber
 - **Do NOT** predict intakes of total fats, saturates and fibre

UK

20. Rauber F, da Costa Louzada ML, Steele EM, Millett C, Monteiro CA, Levy RB. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients 2018;10(5):587. [PMC free article] [PubMed]

Brazil

10. Costa Louzada ML, Martins AP, Canella DS, Baraldi LG, Levy RB, Claro RM, Moubarac JC, Cannon G, Monteiro CA. Ultra-processed foods and the nutritional dietary profile in Brazil. Rev Saude Publica 2015;49:38. [PMC free article] [PubMed]

US

21. Steele EM, Popkin BM, Swinburn B, Monteiro CA. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metrics 2017;15(1):6 [PMC free article] [PubMed]

Canada

12. Moubarac JC, Batal M, Louzada ML, Martinez Steele E, Monteiro CA. Consumption of ultraprocessed foods predicts diet quality in Canada. Appetite 2017;108:512–20. [PubMed]

Country	Q1	Q2	Q3	Q4	Q5		
	Quintile of intake of ultra-processed foods						
	Nutrient intake						
UK							
Brazil							
Canada							
US							

Country	Q1	Q2	Q3	Q4	Q5		
	Quintile of intake of ultra-processed foods						
	Total fat as % energy						
UK	31	32	32	33	33		
Brazil	24	25	27	28	30		
Canada	31	32	33	33	33		
US	31	32	33	33	33		

	Q1	Q2	Q3	Q4	Q5	
Country	Quintile of intake of ultra-processed foods					
Saturated fats as % of energy intake						
UK	12	12	12	12	12	
Brazil	8	9	9	10	9	
Canada	10	11	11	11	11	
US	10	11	11	11	11	

	Q1	Q2	Q3	Q4	Q5		
Country	Quin	tile of intak	e of ultra-p	rocessed f	oods		
Fibre intake (g/1000 kcal)							
UK	8	8	8	8	7		
Brazil	13	12	11	10	9		
Canada	10	9	8	8	7		
US	10	9	8	8	7		

Country	Q1	Q2	Q3	Q4	Q5
	Fibre	intake (g	g/1000 kc	al)	
UK	8	8	8	8	7
Brazil	13	12	11	10	9
Canada	10	9	8	8	7
US	10	9	8	8	7
			-		-

	Official target for fibre intake	Actual fibre intake at Q1 of UPF intake			
UK	30 g/d	15 g/d			
Canada	32 g/d	19 g/d			
US	14 g/ 1000 kcal	10 g/1000 kcal			

Country	Q1	Q2	Q3	Q4	Q5		
Sodium intake (g/1000 kcal)							
UK	1.1	1.2	1.2	1.2	1.3		
Brazil	1.9	1.8	1.7	1.7	1.6		
Canada	1.5	1.5	1.5	1.5	1.5		
US	1.7	1.7	1.7	1.7	1.6		

Country	Q1	Q2	Q3	Q4	Q5		
Sodium intake (g/1000 kcal)							
UK	1.1	1.2	1.2	1.2	1.3		
Brazil	1.9	1.8	1.7	1.7	1.6		
Canada	1.5	1.5	1.5	1.5	1.5		
US	1.7	1.7	1.7	1.7	1.6		

	WHO target for sodium intake intake	Actual sodium intake at Q1 of UPF intake
Brazil		1.9 g/d
Canada	2 g/d	2.9 g/d
US		3.3 g/d
	Institute of Eget	•

	Q1	Q2	Q3	Q4	Q5		
Country	Quintile of intake of ultra-processed foods						
Free (f) or added (a) sugars as % of energy intake							
UK (f)	9.9	11.3	12.2	13.4	15.4		
Brazil (f)	10.9	13.1	15.0	17.6	20.2		
Canada (a)	7.7	11.7	13.4	16.1	19.4		
US (a)	7.7	11.0	13.4	15.7	19.2		

Bear in mind that UPF accounts for over 90% of added sugar intake

Association between ultra-processed food consumption and the nutrient profile of the Colombian diet in 2005

Diana C Parra, MPH, PhD.⁽¹⁾ Maria Laura da Costa-Louzada, PhD.⁽²⁾ Jean-Claude Moubarac, PhD.⁽¹⁾ Renata Bertazzi-Levy, PhD.⁽⁴⁾ Neha Khandpur, ScD.⁽³⁾ Gustavo Cediel, MS, PhD.⁽⁵⁾ Carlos A Monteiro, PhD.⁽⁵⁾

Parra DC, da Costa-Louzada ML, Moubarac JC, Bertazzi-Levy R, Khandpur N, Cotelle G, Monteire CA. Xaociation between uitra-processed food consumption and the nutrient profile Salud Publick MC. 2019;Ai:147-154. Salud Publick MC. 2019;Ai:147-154.

Parra DC, da Costa-Louzada ML, Moubarac JC, Bertazzi-Levy R, Khandpur M, Gedei G, Monteiro CA. Asociación entre el consumo de alimentos ultraprocesado y el perlí nutricional de la dísta de los colombianos en 2005. Salud Poblica Nec. Soly picti 147-154. https://doi.org/10.21149/P038

ARTÍCULO ORIGINAL

	Overall diet	From non-UPF	From UPF
Protein (%en)	13	13	9
Carbohydrates (%en)	65	64	65
Free sugars (%en)	14	12	25
Total fats (%en)	25	25	26
Saturated fats (%en)	9	9	8
Fibre (g/1000 kcal)	12	12	5

Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort

Thibault Fiolet,¹ Bernard Srour,¹ Laury Sellem,¹ Emmanuelle Kesse-Guyot,¹ Benjamin Allès,¹ Caroline Méjean,² Mélanie Deschasaux,¹ Philippine Fassier,¹ Paule Latino-Martel,¹ Marie Beslay,¹ Serge Hercberg,^{1,4} Céline Lavalette,¹ Carlos A Monteiro,³ Chantal Julia,^{1,4} Mathilde Touvier¹

¹Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), Inserm U1153, Inra U1125, Cnam, Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France

ABSTRACT

OBJECTIVE

To assess the prospective associations between consumption of ultra-processed food and risk of cancer.

DESIGN

Population based cohort study.

statistically significant after adjustment for several markers of the nutritional quality of the diet (lipid, sodium, and carbohydrate intakes and/or a Western pattern derived by principal component analysis).

CONCLUSIONS

In this large prospective study, a 10% increase in the proportion of ultra-processed foods in the diet was

OPEN ACCESS Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort

Thibault Fiolet,¹ Bernard Srour,¹ Laury Sellem,¹ Emmanuelle Kesse-Guyot,¹ Benjamin Allès,¹ Caroline Méjean,² Mélanie Deschasaux,¹ Philippine Fassier,¹ Paule Latino-Martel,¹ Marie Beslay,¹ Serge Hercberg,^{1,4} Céline Lavalette,¹ Carlos A Monteiro,³ Chantal Julia,^{1,4} Mathilde Touvier¹

¹Sorbonne Paris Cité Epidemiology and Statistics Research Center (2RESS), Insern U1153, Inra U1125, Cnam, Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobligmy, France

OBJECTIVE To assess the prospective associations between consumption of ultra-processed food and risk of cancer. DESIGN Population based cohort study.

ABSTRACT

statistically significant after adjustment for several markers of the nutritional quality of the diet (lipid, sodium, and carbohydrate intakes and/or a Western pattern derived by principal component analysis). CONCLUSIONS In this large prospective study, a 10% increase in the proportion of ultra-processed foods in the diet was

RESEARCH

Table 1 | Baseline characteristics of study population according to sex specific quarters of ultra-processed food consumption (n=104980), NutriNet-Santé cohort, France, 2009-17*. Values are numbers (percentages) unless stated otherwise

		Quarters of ultra-processed food consumption†				
Characteristics	All participants	1 (n=26 244)	2 (n=26245)	3 (n=26 246)	4 (n=26 245)	P for trend‡
Mean (SD) age, years	42.8 (14.8)	47.9 (13.5)	45.0 (14.0)	42.0 (14.4)	36.5 (13.6)	< 0.001
Female sex	82 159 (78.3)	20 539 (78.3)	20 540 (78.3)	20541 (78.3)	20 542 (78.3)	-
Mean (SD) height, cm	166.8 (8.1)	166.3 (8.0)	166.7 (8.0)	167.0 (8.1)	167.3 (8.2)	< 0.001
Mean (SD) body mass index	23.8 (4.6)	23.8 (4.3)	23.8 (4.4)	23.8 (4.5)	23.8 (5.0)	0.9
Family history of cancer§	35 668 (34.0)	10 542 (40.2)	9624 (36.7)	8625 (32.9)	6877 (26.2)	< 0.001
Higher education:						
No	19 357 (18.4)	5154 (19.6)	4961 (18.9)	4637 (17.7)	4605 (17.6)	
Yes, <2 years	18076 (17.2)	3938 (15.0)	4091 (15.6)	4426 (16.9)	5621 (21.4)	— 0.01
Yes, ≥2 years	67 547 (64.3)	17 152 (65.4)	17 193 (65.5)	17 183 (65.5)	16019 (61.0)	_
Smoking status:						
Current	17 763 (16.9)	4127 (15.7)	4065 (15.5)	4266 (16.3)	5305 (20.2)	<0.001
Never/former	87 217 (83.1)	22 117 (84.3)	22 180 (84.5)	21 980 (83.8)	20940 (79.8)	_
IPAQ physical activity level:						
High	29603 (28.2)	8753 (33.4)	7762 (29.6)	6983 (26.6)	6105 (23.3)	-0.001
Moderate	38 874 (37.0)	9620 (36.7)	9953 (37.9)	9814 (37.4)	9487 (36.2)	- <0.001
1	21 222 (22 A)	(107 (111 0)	5150 (10 A)	5000 (00 D)	(100 (01 7)	

RESEARCH

OPEN ACCESS Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort

Thibault Fiolet, ¹ Bernard Srour, ¹ Laury Sellem, ¹ Emmanuelle Kesse-Guyot, ¹ Benjamin Allès, ¹ Caroline Méjean, ² Mélanie Deschasaux, ¹ Philippine Fassier, ¹ Paule Latino-Martel, ¹ Marie Beslay, ¹ Serge Hercberg, ^{1,4} Céline Lavalette, ¹ Carlos A Monteiro, ³ Chantal Julia, ^{1,4} Mathilde Touvier¹

¹Sorbonne Paris Cité Epidemiology and Statistics Research Center (RESS), Insern U1153, Irna U1125, Cnam, Paris 13 University, Nutritional Epidemiology Research Team (RENN), Bobigmy, France Population

RESEARCH

cs OBJECTIVE To assess the prospective associations between consumption of ultra-processed food and risk of cancer. DESIGN Population based cohort study.

statistically significant after adjustment for several markers of the nutritional quality of the diet (lipid, sodium, and carbohydrate intakes and/or a Western pattern derived by principal component analysis). CONCLUSIONS In this large prospective study, a 10% increase in the

In this large prospective study, a 10% increase in th proportion of ultra-processed foods in the diet was

Quartile	1	2	3	4
BMI kg/m2	23.8	23.8	23.8	23.8

Table 1 | Baseline characteristics of study population according to sex specific quarters of ultra-processed food consumption (n=104980), NutriNet-Santé cohort, France, 2009-17*. Values are numbers (percentages) unless stated otherwise

		Quarters of ultra-processed food consumption†				
Characteristics	All participants	1 (n=26 244)	2 (n=26245)	3 (n=26 246)	4 (n=26 245)	P for trend‡
Mean (SD) age, years	42.8 (14.8)	47.9 (13.5)	45.0 (14.0)	42.0 (14.4)	36.5 (13.6)	< 0.001
Female sex	82 159 (78.3)	20 539 (78.3)	20 540 (78.3)	20541 (78.3)	20 542 (78.3)	-
Mean (SD) height, cm	166.8 (8.1)	166.3 (8.0)	166.7 (8.0)	167.0 (8.1)	167.3 (8.2)	< 0.001
Mean (SD) body mass index	23.8 (4.6)	23.8 (4.3)	23.8 (4.4)	23.8 (4.5)	23.8 (5.0)	0.9
Family history of cancer§	35 668 (34.0)	10 542 (40.2)	9624 (36.7)	8625 (32.9)	6877 (26.2)	< 0.001
Higher education:						
No	19 357 (18.4)	5154 (19.6)	4961 (18.9)	4637 (17.7)	4605 (17.6)	- 0.01
Yes, <2 years	18076 (17.2)	3938 (15.0)	4091 (15.6)	4426 (16.9)	5621 (21.4)	— 0.01
Yes, ≥2 years	67 547 (64.3)	17 152 (65.4)	17 193 (65.5)	17 183 (65.5)	16019 (61.0)	
Smoking status:						
Current	17 763 (16.9)	4127 (15.7)	4065 (15.5)	4266 (16.3)	5305 (20.2)	<0.001
Never/former	87 217 (83.1)	22 117 (84.3)	22 180 (84.5)	21 980 (83.8)	20940 (79.8)	_
IPAQ physical activity level:¶						
High	29 603 (28.2)	8753 (33.4)	7762 (29.6)	6983 (26.6)	6105 (23.3)	
Moderate	38 874 (37.0)	9620 (36.7)	9953 (37.9)	9814 (37.4)	9487 (36.2)	- <0.001
1	01 000 (00 0)	(107 (110))	5450 (40 C)	5000 (00 0)	(100 (01 7)	

Adams and White International Journal of Behavioral Nutrition and Physical Activity (2015) 12:160 DOI 10.1186/s12966-015-0317-y

International Journal of Behavioral Nutrition and Physical Activity

RESEARCH

Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: cross-sectional analysis of UK National Diet and Nutrition Survey (2008–12)

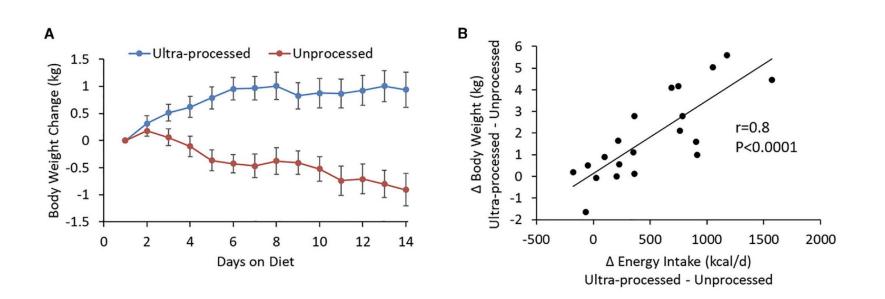
Jean Adams 🙆 and Martin White

Abstract

Nova classification	Adjusted odds ratio of being overweight or obese
Unprocessed or minimally processed foods	1.0
Processed ingredients	0.97
Unprocessed or minimally processed foods AND processed ingredients	0.99
Ultra-processed food products	1.01

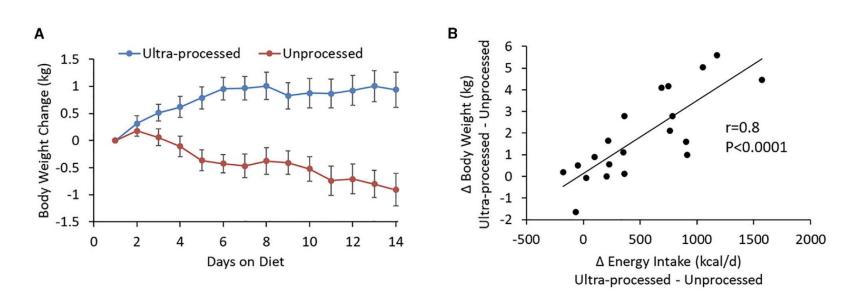
Please cite this article in press as: Hall et al., Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of *Ad Libitum* Food Intake, Cell Metabolism (2019), https://doi.org/10.1016/j.cmet.2019.05.008

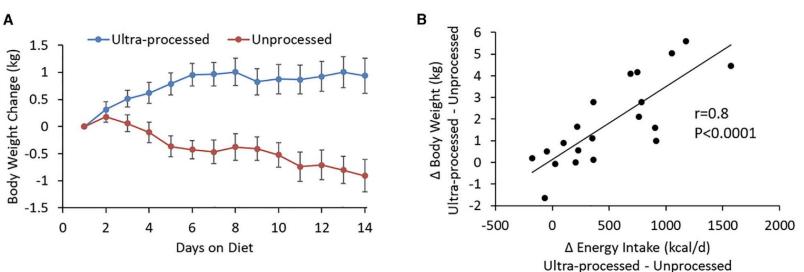
Cell Metabolism Clinical and Translational Report


Cell²ress

Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of *Ad Libitum* Food Intake

Kevin D. Hall,^{1,5,*} Alexis Ayuketah,¹ Robert Brychta,¹ Hongyi Cai,¹ Thomas Cassimatis,¹ Kong Y. Chen,¹ Stephanie T. Chung,¹ Elise Costa,¹ Amber Courville,² Valerie Darcey,¹ Laura A. Fletcher,¹ Ciaran G. Forde,⁴ Ahmed M. Gharib,¹ Juen Guo,¹ Rebecca Howard,¹ Paule V. Joseph,³ Suzanne McGehee,¹ Ronald Ouwerkerk,¹ Klaudia Raisinger,² Irene Rozga,¹ Michael Stagliano,¹ Mary Walter,¹ Peter J. Walter,¹ Shanna Yang,² and Megan Zhou¹ ¹National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA ²National Institutes of Health Clinical Center, Bethesda, MD, USA ³National Institute of Nursing Research, Bethesda, MD, USA ⁴Singapore Institute for Clinical Sciences, Singapore, Singapore ⁵Lead Contact *Correspondence: kevinh@nih.gov https://doi.org/10.1016/j.crmet.2019.05.008





Energy density (kcal/g) of	Non-processed diet	Ultra processed diet
Foods offered to subjects	1.02	1.03

Energy density (kcal/g) of	Non-processed diet	Ultra processed diet
Foods offered to subjects	1.02	1.03
Foods selected by subjects	1.09	1.36

Cell Metabolism

Ultra-Processed Food and Obesity: The Pitfalls of Extrapolation from Short Studies

David S. Ludwig,^{1,5,*} Arne Astrup,² Lydia A. Bazzano,³ Cara B. Ebbeling,¹ Steven B. Heymsfield,⁴ Janet C. King,⁵ and Walter C. Willett⁶

However, the findings of Hall et al may be transient and independent of food processing

However, the findings of Hall et al may be transient and independent of food processing

It might be tempting to attribute modern-day diet problems predominantly to the food industry, but.....

However, the findings of Hall et al may be transient and independent of food processing It might be tempting to attribute modern-day diet problems predominantly to the food industry, but.....

.....a knowledge of the drivers of food intake, including the metabolic effect of food independent of calorie content is needed to mitigate the risks of misguiding the food industry in how to formulate more healthful food products

However, the findings of Hall et al may be transient and independent of food processing It might be tempting to attribute modern-day diet problems predominantly to the food industry, but.....

.....a knowledge of the drivers of food intake, including the metabolic effect of food independent of calorie content is needed to mitigate the risks of misguiding the food industry in how to formulate more healthful food products

In fact, many of the foods utilized on the ultra processed diet (e.g. breads, baked potato chips and apple sauce) and various refined grain products are, from a food science perspective, no more processed than olive oil, dark chocolate, or nut butters

However, the findings of Hall et al may be transient and independent of food processing It might be tempting to attribute modern-day diet problems predominantly to the food industry, but.....

.....a knowledge of the drivers of food intake, including the metabolic effect of food independent of calorie content is needed to mitigate the risks of misguiding the food industry in how to formulate more healthful food products

In fact, many of the foods utilized on the ultra processed diet(e.g. breads, baked potato chips and apple sauce) and various refined grain products are, from a food science perspective, no more processed than olive oil, dark chocolate, or nut butters

The processing of olives to olive oil removes virtually all the fiber and fully disrupts the natural food structure. Dark chocolate typically contains a dozen or more refined ingredients

Commentary. The Food System. Ultra-processed products **Product reformulation will not improve public health**

World Nutrition. Journal of the World Public Health Nutrition Association. Volume 3, Number 9, September

"Reformulation is not of healthy foods. It is of inherently unhealthy products. These are usually identified in dietary guidelines as products to be consumed only occasionally. They are made only some what less unhealthy by manipulation of their constituents."

Reformulation

Choose better alternatives

UCD Institute of Food & Health

MUFA rich spread

Probing the role of a specific ultra-processed foods on nutrient intake

Examples of typical ultra-processed products are:

Carbonated drinks

Sweet or savoury packaged snacks Ice-cream

Chocolate, candies (confectionery)

Mass-produced packaged breads and buns Margarines and spreads

Cookies (biscuits), pastries, cakes, and cake r Breakfast 'cereals', 'cereal' and 'energy' bars

Energy' drinks

Milk drinks

Fruit' yoghurts and 'fruit' drinks; cocoa drinks

Meat and chicken extracts and 'instant' sauces

Infant formulas, follow-on milks, other baby products

Pre-prepared pies and pasta and pizza dishes Poultry and fish 'nuggets' and 'sticks' Sausages, burgers, hot dogs, Instant soups, noodles and desserts.

Ultra-processed products

Nutrition and the Lifecycle

Food Consumption Patterns and Micronutrient Density of Complementary Foods Consumed by Infants Fed Commercially Prepared Baby Foods

Kathleen C. Reidy, DrPH Regan Lucas Bailey, PhD Denise M. Deming, PhD Lynda O'Neill, PhD B. Thomas Carr, MS Ruta Lesniauskas, MS Wendy Johnson, PhD

Feeding Infants and Toddlers Study 2008

% of infants in FITS study consuming commercial baby food: fruits, vegetables, dinners

Age in months	%
6	78
7	81
8	80
9	71
10	82
11	53

UCD Institute of Food & Health

Daily intakes vitamins among infants consuming or not consuming commercial non-cereal baby foods

Vitamin	Consumers of commercial baby food	Non-consumers of commercial baby food	
Vitamin E (mg/d)	5.5	4.6	
Vitamin C (mg/d)	131.0	95.8	
Retinol eq (ug/d)	1172	696	
Riboflavin (mg/d)	1.4	1.4	
Thiamin (mg/d)	1.1	1.2	
Niacin (mg/d)	15.9	16.7	
Vitamin B ₆ (mg/d)	1.5	1.5	
Folate (mg/d)	328	418	
Vitamin B ₁₂ (ug/d)	2.5	3.0	
Vitamin D (ug/d)	1.0	1.7	
Institute of Food & Health			

UCD Institute of Food & Health

Reidy et al:Nutr Today. 2018 Mar; 53(2):68-78

Daily intakes minerals among infants consuming or not consuming commercial non-cereal baby foods

Mineral	Consumers of commercial baby food	Non-consumers of commercial baby food
Calcium (mg/d)	672	637
Magnesium (mg/d)	202	177
Iron (mg/d)	33.2	27.7
Potassium (mg/d)	2025	1607
Zinc (mg/d)	7.9	8.3
Sodium (mg/d)	572	1192

UCD Institute of Food & Health

Examples of typical ultra-processed products are:

Carbonated drinks

Sweet or savoury packaged snacks

Ice-cream

Chocolate, candies (confectionery)

Mass-produced packaged breads and buns

Margarines and spreads

Cookies (biscuits), pastries, cakes, and cake mixes

Breakfast 'cereals', 'cereal' and 'energy' bars

Energy' drinks

Milk drinks

Fruit' yoghurts and 'fruit' drinks; cocoa drinks

Meat and chicken extracts and 'instant' sauces

Infant formulas, follow-on milks, other baby products

Pre-prepared pies and pasta and pizza dishes Poultry and fish 'nuggets' and 'sticks' Sausages, burgers, hot dogs, Instant soups, noodles and desserts.

376

Glycemic, Insulinemic, and Appetite Responses of Patients With Type 2 **Diabetes to Commonly Consumed Breads**

Cathy Breen, BSc
Miriam Ryan, PhD
Michael, J. Gibnev

chael. J. Gibney, PhD

Michelle Corrigan, PhD

Donal O'Shea, MD

Purpose

The purpose of this study was to identify the breads most commonly consumed by adults with type 2 diabetes (T2DM) and then examine the postprandial glycemic, insulinemic, and appetite responses that these breads elicit.

Smart science, good food

Calcium carbonate, iron, niacin, E472e emulsifier, flour treatment agent

Raising agents, sodium Hydrogen carbonate, diphosphates

Nothing

Calcium carbonate, iron, niacin, E472e emulsifier, flour treatment agent

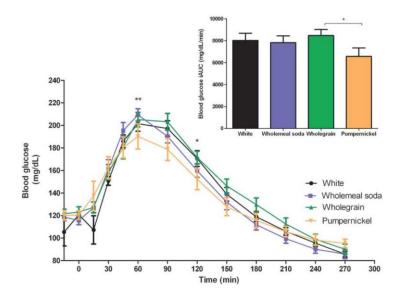


Figure 2. Glucose response curve and incremental area under the curve following consumption of test breads in part 2. P < .05. P < .01.

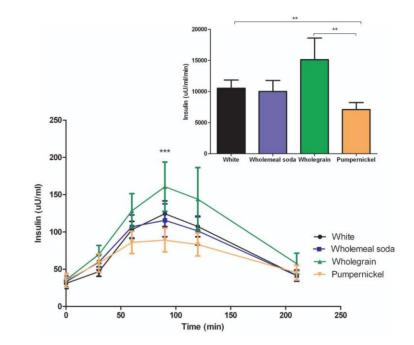
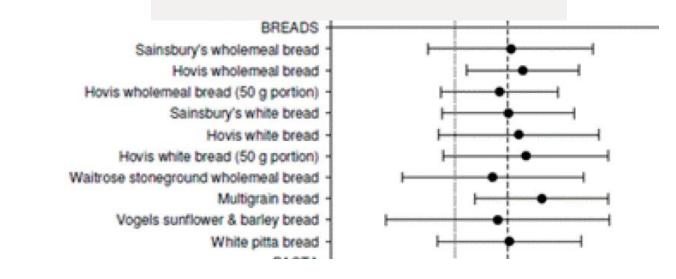


Figure 3. Insulin response curve and incremental area under the curve following consumption of test breads in part 2. "P < .001.



Published in final edited form as:

Eur J Clin Nutr. 2008 February ; 62(2): 279–285. doi:10.1038/sj.ejcn.1602723.

Determination of the glycaemic index of various staple carbohydrate-rich foods in the UK diet

Louise M. Aston, Joanna M. Gambell, David M. Lee, Susan P. Bryant, and Susan A. Jebb MRC Human Nutrition Research Elsie Widdowson Laboratory 120 Fulbourn Road Cambridge CB1 9NL

Examples of typical ultra-processed products are:

Carbonated drinks

Sweet or savoury packaged snacks

Ice-cream

Chocolate, candies (confectionery)

Mass-produced packaged breads and buns Margarines and spreads

Cookies (biscuits), pastries, cakes, and cake mixes Breakfast 'cereals', 'cereal' and 'energy' bars

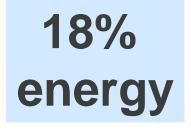
Energy' drinks

Milk drinks

Fruit' yoghurts and 'fruit' drinks; cocoa drinks


Meat and chicken extracts and 'instant' sauces

Infant formulas, follow-on milks, other baby products


Pre-prepared pies and pasta and pizza dishes Poultry and fish 'nuggets' and 'sticks' Sausages, burgers, hot dogs, Instant soups, noodles and desserts.

Intake of saturated fats in Ireland

UCD Institute of Food & Health

Examples of typical ultra-processed products are:

Carbonated drinks

Sweet or savoury packaged snacks

Ice-cream

Chocolate, candies (confectionery)

Mass-produced packaged breads and buns

Margarines and spreads

Cookies (biscuits), pastries, cakes, and cake mixes

Breakfast 'cereals', 'cereal' and 'energy' bars

Energy' drinks

Milk drinks

Fruit' yoghurts and 'fruit' drinks; cocoa drinks Meat and chicken extracts and 'instant' sauces Infant formulas, follow-on milks, other baby products Pre-prepared pies and pasta and pizza dishes Poultry and fish 'nuggets' and 'sticks' Sausages, burgers, hot dogs, Instant soups, noodles and desserts.

Almost all the extensive literature on ultra-processed foods is focused on foods and nutrients

This is at odds with the basic tenet of UPF, that is, processing matters, not foods or nutrients

However, there is not a shred of evidence that there is a link between food additives and chronic disease

Martínez Steele et al. Population Health Metrics (2017) 15:6 DOI 10.1186/s12963-017-0119-3

Population Health Metrics

RESEARCH

Open Access

The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study

Euridice Martínez Steele^{1,2}, Barry M. Popkin³, Boyd Swinburn⁴ and Carlos A. Monteiro^{1,2*}

PDF search for key words

	Abstract	Introduction	Methods	Results & discussion
Added sugars	2	1	3	11
Sodium	1	1	2	11
Fiber	3	2	4	10
Saturates	2	2	5	11
Total fat	0	2	1	3

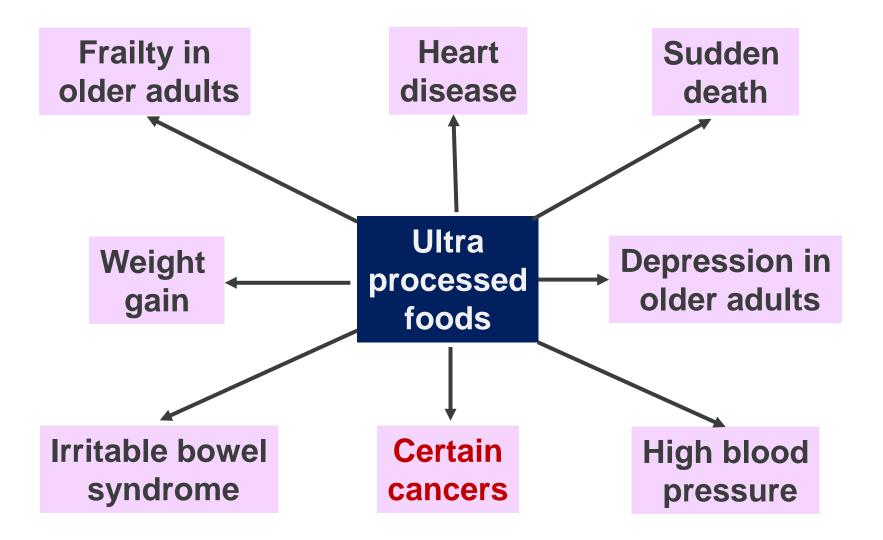
Martínez Steele et al. Population Health Metrics (2017) 15:6 DOI 10.1186/s12963-017-0119-3

Population Health Metrics

RESEARCH

Open Access

The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study


Euridice Martínez Steele^{1,2}, Barry M. Popkin³, Boyd Swinburn⁴ and Carlos A. Monteiro^{1,2*}

PDF search for key words

	Abstract	Introduction	Methods	Results & discussion
Additives	0	2	2	0
Added sugars	2	1	3	11
Sodium	1	1	2	11
Fiber	3	2	4	10
Saturates	2	2	5	11
Total fat	0	2	1	3

Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort

Thibault Fiolet,¹ Bernard Srour,¹ Laury Sellem,¹ Emmanuelle Kesse-Guyot,¹ Benjamin Allès,¹ Caroline Méjean,² Mélanie Deschasaux,¹ Philippine Fassier,¹ Paule Latino-Martel,¹ Marie Beslay,¹ Serge Hercberg,^{1,4} Céline Lavalette,¹ Carlos A Monteiro,³ Chantal Julia,^{1,4} Mathilde Touvier¹

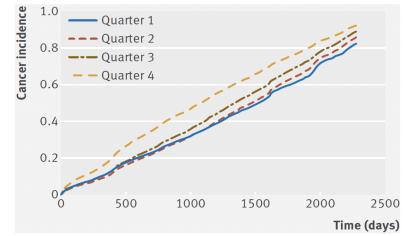


Fig 2 | Cumulative cancer incidence (overall cancer risk) according to quarters of proportion of ultra-processed food in diet

<u>Mediation analyses did not support a strong effect of the "nutritional quality" component in this association, suggesting that other bioactive compounds contained in ultra-processed food may contribute to explain the observed associations.</u>

Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort

Thibault Fiolet,¹ Bernard Srour,¹ Laury Sellem,¹ Emmanuelle Kesse-Guyot,¹ Benjamin Allès,¹ Caroline Méjean,² Mélanie Deschasaux,¹ Philippine Fassier,¹ Paule Latino-Martel,¹ Marie Beslay,¹ Serge Hercberg,^{1,4} Céline Lavalette,¹ Carlos A Monteiro,³ Chantal Julia,^{1,4} Mathilde Touvier¹

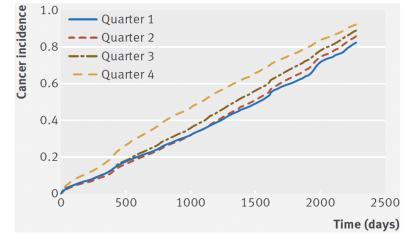


Fig 2 | Cumulative cancer incidence (overall cancer risk) according to quarters of proportion of ultra-processed food in diet

<u>Mediation analyses did not support a strong effect of the "nutritional quality" component in this association, suggesting that other bioactive compounds contained in ultra-processed food may contribute to explain the observed associations.</u>

<u>A second hypothesis concerns the wide range of additives contained in</u> <u>ultra-processed foods</u>.

TiO₂ "as a possible carcinogen"

.... But EFSA state that "The data provided demonstrate that the additive particles stay embedded even in swollen polar polymers such as polyamide, and do not migrate. Thus, the **additive particles do not give rise to exposure via food and to toxicological concern**.

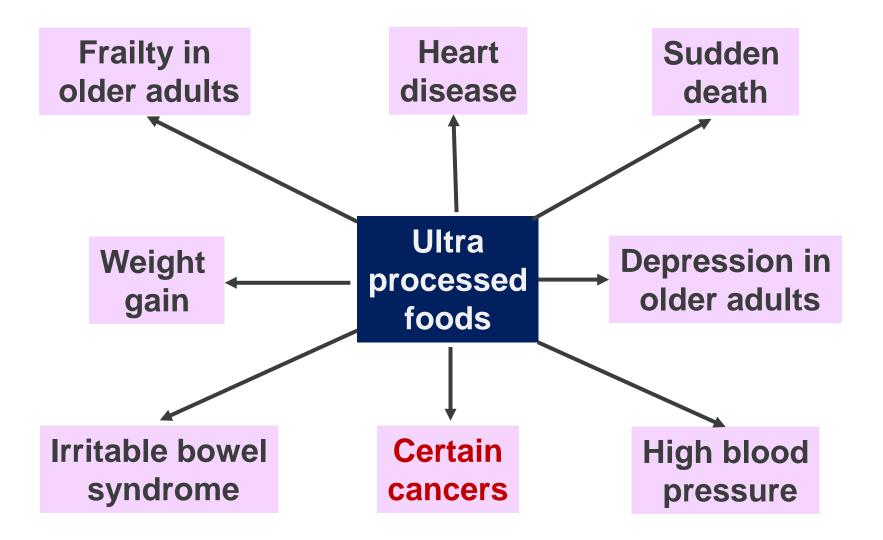
Although previous experimental studies in animals confirmed the safety of aspartame, their relevance to human health outcomes has been questioned, particularly regarding potential long term carcinogenicity.

Overall, EFSA concluded that the information available from the **Soffritti** and **Halldorsson** publications **do not give reason to reconsider the previous evaluations** of aspartame or of other food additive sweeteners authorised in the European Union.

Nitrosamines:EFSA state.....

"We re-assessed the safety of nitrites and nitrates added to food as part of EFSA's re-evaluation programme of all food additives authorised in the EU before 2009. Based on the available evidence, we concluded that there was no need to change previously set safe levels for either substance."

Acrylamide: This *was* a problem for industry and *remains* a problem in the domestic kitchen



Bisphenol A Increasing evidence suggests involvement in the development of several non-communicable disease including cancer linked to endocrinal disruptors

EFSA's comprehensive review of BPA exposure and toxicity concludes that BPA poses no health risk to consumers of any age group (including unborn children, infants and adolescents) at current exposure levels

Porridge and yogurt

Whole meal bread and low fat spread

Tea with low fat milk

UCD Institute of Food & Health

UCD Institute of Food & Health

Cantucci

Vino Santo

Non-churn ice cream

Cantucci

Vino Santo

Non-churn ice cream

Vanilla is used as a flavouring enhancer. Thus they are ultra-processed according to the NOVA classification!!!!

Concluding thoughts:

- There is no clear biological basis to believe that either processing or additives are linked to chronic disease
- The NOVA literature does not focus on processing but on nutrients
- Creating a large category of foods (UPF), and using that single category in epidemiology is retrograde
- Advocating the avoidance of UPF creates many problems for policy makers consumers
- Home prepared food is seen as the ideal. We do not live in an ideal society
- Non-ultra processed foods are expensive and occasional convenience in dining is an outcome of our busy lifestyle

UCD Institute of Food & Health

