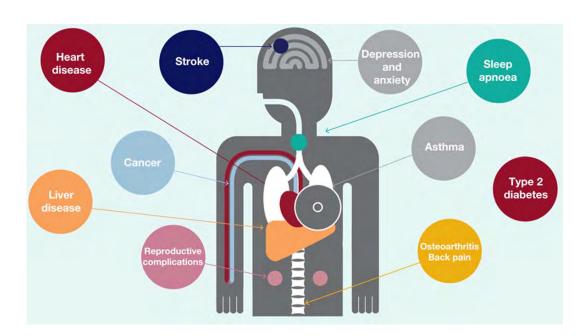
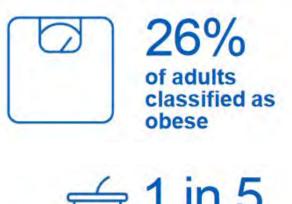


Paradox of plenty:


Can we really have concerns over micronutrient intakes in the UK?

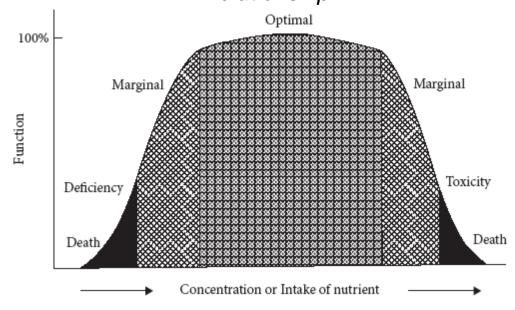

Ayela Spiro, Nutrition Science Manager, British Nutrition Foundation 24th April 2018

IFST Vitamins and Minerals - Small but Mighty

We are rightly concerned about obesity!

The treatment of obesity and diabetes costs us more each year than the police, fire service and judicial system combined.

But what about micronutrients?



They are indeed 'small and mighty' -

Note severe consequences of deficiency in developing countries

- lodine deficiency: primary cause of preventable brain damage in children.
- Vitamin A deficiency: leading cause of preventable blindness in children, increases the risk of disease and death from severe infections.
- Iron deficiency anaemia, increases the risk of haemorrhage and bacterial infection during childbirth and is implicated in maternal deaths

But more ≠ better Intake and health is not a linear relationship

UK Micronutrient intakes: evidence of inadequacy?

% males & females of different ages with intakes of micronutrients below lower reference nutrient intake (LRNI)

1.5-3	4-10		11-18 19		19	- 64	65-74		75+	
All	M	F	M	F	M	F	M	F	M	F
1	2	1	11	22	7	11	0	11	4	10
1	0	1	2	15	3	5**	0	3	3	6
3	6	4	14	27	9	15	2	6	4	9
10	0	3	12	54	2	27	0	8	2	12
0	0	0	18	38	11	23	4	22	16	34
5	9	14	18	27	7	8	5	3	8	12
	All 1 1 3 3 10 0	All M 1 2 1 0 3 6 10 0 0 0	All M F 1 2 1 1 0 1 3 6 4 10 0 3 0 0 0	All M F M 1 2 1 11 1 0 1 2 3 6 4 14 10 0 3 12 0 0 0 18	All M F M F 1 2 1 11 22 1 0 1 2 15 3 6 4 14 27 10 0 3 12 54 0 0 0 18 38	All M F M F M 1 2 1 11 22 7 1 0 1 2 15 3 3 6 4 14 27 9 10 0 3 12 54 2 0 0 0 18 38 11	All M F M F M F M F 1 2 1 11 22 7 11 1 0 1 2 15 3 5** 3 6 4 14 27 9 15 10 0 3 12 54 2 27 0 0 0 18 38 11 23	All M F M F M F M F M 1 2 1 11 22 7 11 0 1 0 1 2 15 3 5** 0 3 6 4 14 27 9 15 2 10 0 3 12 54 2 27 0 0 0 0 18 38 11 23 4	All M F M F M F M F M F M F M F M F M F M	All M F M F M F M F M F M 1 2 1 11 22 7 11 0 11 4 1 0 1 2 15 3 5** 0 3 3 3 6 4 14 27 9 15 2 6 4 10 0 3 12 54 2 27 0 8 2 0 0 0 18 38 11 23 4 22 16

[†] food sources only † food sources and supplements)

Data: National Dietary and Nutrition Survey Years 7&8 (2014/2015-2015/2016)

LRNI only meets the need of 2.5% population. Intakes below the LRNI are inadequate for most individuals Some DRVS (e.g. potassium, zinc) based on limited data - health impact of intakes below LRNI is unclear

^{**7%} of women aged 19-49 y ('childbearing age') with intakes below LRNI

UK: Evidence of deficiency? Its not measured by a 'naturopath'

	Deficiency disorder	Measure of status (blood/urine)	WHO Clinical thresholds indicating increased risk
Folate	Folate deficiency anaemia Neural Tube Defect (e.g spina bifida)	RBC Folate	% with concentration < 305nmol/L (anaemia) % with concentration < 748 nmol/L (NTD)
Iron	Iron deficiency anaemia	FBC Haemoglobin + plasma ferritin	% below threshold both for haemoglobin and plasma ferritin e.g non pregnant females: haemoglobin <120g/L and ferritin <15mg/L
Iodine	Impaired cognitive development (cretinism)	Urinary Iodine concentration	Gen population: median 100-199μg/L + < 20% samples <50μg/L Pregnancy: median 150μg/L and 249μg/L (defines population with no deficiency)
Vitamin D	Nutritional Rickets	Plasma 25- hydroxyvitamin D	% with concentration <25nmol/L (UK threshold)

Considering our future generation: Looking at status

	Adole	scents	Adults		
	Boys	Girls	Men	Women	Women child bearing age
Folate					
% increased risk of anaemia	15	28	3	11	16
% increased risk NTD					91
lodine					Median 102µg/L
Risk of deficiency in	0	0	0	0	does not meet criterion for
population					sufficiency in pregnant women
Iron					
% iron- deficiency anaemia	1	9	1	5	n/a

NTD case data may not include early fetal losses termination and data (Termination of Pregnancy for Fetal Anomaly, 81%)

We need to talk about...... Vitamin D

	Intake mcg	g/d (RNI	Status		
	From food sources only		From food sources plus supplements		% low vitamin D status (<25nmol/L)
	Intake	% RNI	Intake	% RNI	All (M/F)
1.5-3 y	2.0	20	2.9	29	N/A
4-10 y	2.0	20	2.7	27	10
11-18 y	2.1	21	3.5	35	26 (15/39)
19-64 y	2.7	27	4.2	42	17 (19/16)
65-74 y	3.5 35		6.0	60	13 (11/15)
75 y and over	2.8	28	5.3	53	N/A

BPSU Rickets:
2015-17
130 cases reported
'Uptake of vitamin
D supplementation
remains low'

UK government recommends

- Under 5s and at risk groups: should take a daily vitamin 10mcg
 D supplement (0-1 years: 8.5 -10 mcg)
- Over 5s: to consider taking a daily supplement containing 10mcg of vitamin D during the autumn and winter months.

Dietary patterns impact on micronutrient intakes

Less specific focus on single nutrients to the diets that have the most public health benefit

Healthy pattern typically characterised by

- higher consumption of vegetables, fruit, wholegrains, low fat dairy, seafood nuts, seeds, legumes
- lower intakes of fatty/processed meat, refined grains, sugars-sweetened foods/drinks, salt, sat fat

Teens poor dietary choices reflected in poor nutrient intake

Only 8% meeting
5 A Day
Around 176g
similar to mean
of 1.5 – 3y

		11-	18	Example food sources			
		M	F				
Calcium	/	11	22	Dairy, non-dairy fortified alternatives, canned fish, fortified flour			
Folate		2	15	Green leafy veg, wholegrains, nuts, fortified breakfast cereals			
lodine		14	27	Dairy foods, eggs, fish, shellfish			
Iron	(12	54	Red meat, liver, pulses, nuts, fortified breakfast cereals, dried fruit, dark green leafy veg			
Potassium		18	38	Potatoes, fish, dairy, veg, dried fruit, nuts, seeds			
Zinc		18	27	Meat, poultry, shellfish, nuts, wholegrains			

Its not just the calories...

Concept of dietary quality or nutrient density is sometimes overshadowed

Acknowledgement

Many thanks to :-

- IFST for the invitation
- The Nutrition Science Team at BNF

Sara Stanner (Science Director)
Bridget Benelam
Lucy Chambers
Sarah Coe
Helena Gibson-Moore
Melanie Hargreaves
Stacey Lockyer
Ros Miller

For further information, go to: www.nutrition.org.uk

© British Nutrition Foundation 2018 • www.nutrition.org.uk