

PFSG and E3S Fast Forward Conference

Panel Performance – and Fast!

Leatherhead Food Research 13/05/13

CAROL RAITHATHA LIMITED

HELP!

Agenda for workshop

- Introduction
- Data analysis and discussion
- Round up and Q and A

Panel Performance

- Day-to-day or project-to-project assessment of profiling data
- To determine if the data is fit for purpose
- To determine next steps

Three Critical Measurements

Repeatability

 Panellists' replicates in a project are acceptable

Consistency

Enough agreement in scores to use the mean

Discrimination

Difference is detected if a difference exists

How long do panel performance checks take? Results from LinkedIn* Survey

Slow vs. fast performance monitoring

- Realistically What can you do quickly?
 - Detect big problems
 - Determine relative panellist performance
- What will take more time
 - Uncovering real nature and cause of problems
 - Monitoring over time
 - Correcting problems

Fast and Faster

FAST basic data checks — minimum before writing a report

Making detailed checks

FASTER – validating that
a panel is well trained,
or part of longer term
monitoring

Statistical Tools and Packages

- Makes fast and faster panel performance possible!
- Today we use a selection
 - All could be used for fast and/or faster checks
 - There are also many other packages
- Measures and outputs vary

Focus on panel vs. panellists

Type of measures

Tables and graphs

The dataset

- Descriptive analysis
- 10 apple flavour attributes
- A range of apple varieties
- Natural variability an additional factor to

consider

Anne

- Really fast panel performance
- Quick essential checks before writing a report on a routine test
- 30 minutes evaluation maximum
- Examples with Senpaq and XLSTAT

SENPAQ (Qi Statistics)

- Easy to use
- Tests for differences in product mean scores
- Visualisations and statistical tests
- Multivariate Analysis
 - Principal Components (PCA)
 - Canonical Variates (CVA)
- Panel Performance

Your Task

Your boss is knocking on your door for the results

 What would you look at to quickly check panel performance?

Find a laptop and run the analysis

Results to Report - Means Tab

	Braeburn	Fuji	Gibson's Green	Golden Delicious	Granny Smith	Johnson's Red	Pink Lady	Royal Gala	Sun Gold	Top Red	LSD	Prob	Scale Type	Low Scores	Interaction F-value	Interaction p-value	RMSE
F_Green apple	36.4	34.9	55.2	44.8	68.4	3.6	39.7	7.0	47.3	6.9	10.8	<.0001	0100	35.6%	2.5	<.0001	14.7
F_Red apple	19.9	23.2	2.1	9.2	0.3	59.5	25.6	50.9	17.5	51.6	11.0	<.0001	0100	39.7%	3.4	<.0001	12.8
F_Sweet	34.3	38.4	29.9	36.1	20.5	51.0	37.1	42.3	29.3	40.4	8.5	<.0001	0100	6.7%	1.8	0.0001	13.5
F_Acidic/sour	33.8	20.1	37.7	25.6	53.0	9.5	45.8	16.5	49.0	12.9	7.9	<.0001	0100	16.1%	1.7	0.0008	13.0
F_Bitter	9.7	13.4	13.9	12.0	23.3	9.5	11.2	14.7	13.8	23.3	8.3	0.0056	0100	41.1%	2.3	<.0001	11.8
F_Stale	0.7	0.4	1.0	0.3	0.6	1.4	0.2	4.0	0.2	0.9	1.8	0.0027	0100	95.3%	1.0	0.3952	3.8
F_Peardrops	8.4	6.4	2.6	1.6	3.1	9.6	9.4	13.3	7.0	5.8	8.0	0.1103	0100	78.1%	2.3	<.0001	11.3
F_Watery	13.4	18.1	29.4	23.5	18.7	15.8	5.6	10.6	6.0	28.0	10.5	<.0001	0100	47.5%	2.3	<.0001	14.9
F_Rhubarb	1.3	0.6	0.5	1.3	6.0	0.2	4.8	0.4	11.5	0.3	3.7	<.0001	0100	88.1%	1.8	0.0002	6.0
F_Cooked apple	0.7	0.7	6.2	0.8	0.2	0.5	0.3	0.3	0.6	0.3	2.6	0.0004	0100	96.1%	1.4	0.0335	4.9

p-Value Product Differences

p-Value Interaction

	Braeburn	Fuji	Gibson's Green	Golden Delicious	Granny Smith	Johnson's Red	Pink Lady	Royal Gala	Sun Gold	Top Red	CSD	Prob	Scale Type	Low Scores	Interaction F-value	Interaction p-value	RMSE
F_Green apple	36.4	34.9	55.2	44.8	68.4	3.6	39.7	7.0	47.3	6.9	10.8	<.0001	0100	35.6%	2.5	<.0001	14.7
F_Red apple	19.9	23.2	2.1	9.2	0.3	59.5	25.6	50.9	17.5	51.6	11.0	<.0001	0100	39.7%	3.4	<.0001	12.8
F_Sweet	34.3	38.4	29.9	36.1	20.5	51.0	37.1	42.3	29.3	40.4	8.5	<.0001	0100	6.7%	1.8	0.0001	13.5
F_Acidic/sour	33.8	20.1	37.7	25.6	53.0	9.5	45.8	16.5	49.0	12.9	7.9	<.0001	0100	16.1%	1.7	0.0008	13.0
F_Bitter	9.7	13.4	13.9	12.0	23.3	9.5	11.2	14.7	13.8	23.3	8.3	0.0056	0100	41.1%	2.3	<.0001	11.8
F_Stale	0.7	0.4	1.0	0.3	0.6	1.4	0.2	4.0	0.2	0.9	1.8	0.0027	0100	95.3%	1.0	0.3952	3.8
F_Peardrops	8.4	6.4	2.6	1.6	3.1	9.6	9.4	13.3	7.0	5.8	8.0	0.1103	0100	78.1%	2.3	<.0001	11.3
F_Watery	13.4	18.1	29.4	23.5	18.7	15.8	5.6	10.6	6.0	28.0	10.5	<.0001	0100	47.5%	2.3	<.0001	14.9
F_Rhubarb	1.3	0.6	0.5	1.3	6.0	0.2	4.8	0.4	11.5	0.3	3.7	<.0001	0100	88.1%	1.8	0.0002	6.0
F_Cooked apple	0.7	0.7	6.2	0.8	0.2	0.5	0.3	0.3	0.6	0.3	2.6	0.0004	0100	96.1%	1.4	0.0335	4.9

No significant difference detected in this attribute Is this OK?

Do the samples not differ in this attribute OR – are the panel not detecting the difference??

	Braeburn	Fuji	Gibson's Green	Golden Delicious	Granny Smith	Johnson's Red	Pink Lady	Royal Gala	Sun Gold	Top Red	CSD	Prob	Scale Type	Low Scores	Interaction F-value	Interaction p-value	RMSE
F_Green apple	36.4	34.9	55.2	44.8	68.4	3.6	39.7	7.0	47.3	6.9	10.8	<.0001	0100	35.6%	2.5	<.0001	14.7
F_Red apple	19.9	23.2	2.1	9.2	0.3	59.5	25.6	50.9	17.5	51.6	11.0	<.0001	0100	39.7%	3.4	<.0001	12.8
F_Sweet	34.3	38.4	29.9	36.1	20.5	51.0	37.1	42.3	29.3	40.4	8.5	<.0001	0100	6.7%	1.8	0.0001	13.5
F_Acidic/sour	33.8	20.1	37.7	25.6	53.0	9.5	45.8	16.5	49.0	12.9	7.9	<.0001	0100	16.1%	1.7	0.0008	13.0
F_Bitter	9.7	13.4	13.9	12.0	23.3	9.5	11.2	14.7	13.8	23.3	8.3	0.0056	0100	41.1%	2.3	<.0001	11.8
F_Stale	0.7	0.4	1.0	0.3	0.6	1.4	0.2	4.0	0.2	0.9	1.8	0.0027	0100	95.3%	1.0	0.3952	3.8
F_Peardrops	8.4	6.4	2.6	1.6	3.1	9.6	9.4	13.3	7.0	5.8	8.0	0.1103	0100	78.1%	2.3	<.0001	11.3
F_Watery	13.4	18.1	29.4	23.5	18.7	15.8	5.6	10.6	6.0	28.0	10.5	<.0001	0100	47.5%	2.3	<.0001	14.9
F_Rhubarb	1.3	0.6	0.5	1.3	6.0	0.2	4.8	0.4	11.5	0.3	3.7	<.0001	0100	88.1%	1.8	0.0002	6.0
F_Cooked apple	0.7	0.7	6.2	0.8	0.2	0.5	0.3	0.3	0.6	0.3	2.6	0.0004	0100	96.1%	1.4	0.0335	4.9

Ah !!

The panellist by sample interaction is significant –perhaps that is why I am not seeing differences

	_	2	ဇ	4	5	9	7	∞	o	10	=	12	Interaction p-value
F_Green apple	0.4145	0.0490	0.0634	0.0138	0.0010	0.0076	0.0794	0.0581	0.0569	0.2625	<.0001	0.0001	<.0001
F_Red apple	0.0134	0.0022	0.0186	0.0017	<.0001	<.0001	0.0534	0.0017	0.3275	0.0257	<.0001	<.0001	<.0001
F_Sweet	0.3629	0.7338	0.0007	0.0155	0.0012	0.0872	0.0168	0.6064	0.4463	0.6446	0.1563	0.0103	0.0001
F_Acidic/sour	0.0025	0.3196	0.2170	0.4491	0.1619	0.6930	0.0909	0.1333	0.9418	0.5695	0.2731	<.0001	0.0008
F_Bitter	0.3365	0.0015	0.0941	0.6923	<.0001	0.5217	0.9482	0.8926	0.1930	0.3798	0.0001	0.0244	<.0001
F_Stale	0.9707	0.9707	0.9983	0.9707	0.0272	0.0923	0.2420	0.9707	0.9707	0.0432	0.0008	0.9826	0.3952
F_Peardrops	0.9101	0.0004	0.0063	0.0145	<.0001	0.9271	0.6908	0.5158	0.2237	0.2805	0.9801	<.0001	<.0001
F_Watery	<.0001	0.0188	0.0005	0.2624	0.4248	0.1915	0.9147	0.2083	<.0001	0.2977	0.0801	0.0165	<.0001
F_Rhubarb	0.0070	0.6801	0.0018	0.1214	0.1015	0.2582	0.9362	0.5049	0.2582	0.7762	0.0009	0.0002	0.0002
F_Cooked apple	0.8852	0.8705	0.8698	0.8852	<.0001	0.8852	0.9412	0.8852	0.2543	<.0001	0.8852	0.8518	0.0335

Assessor Performance –Table 5b

F Peardrops

Indicates assessors making a significant contribution to the interaction

Assessors 5 12 2 3 4 - all highly significant

Action

If F_Peardrop a key attribute in the product assessment

Report –inconclusive result

Instigate panel training in this attribute

SENPAQ - Monitoring the Panel

- XLSTAT MX package –offers panel analysis
- Fits ANOVA models
- Focus is on panellists rather than products
- Some useful graphical outputs

Scoring range for each assessor

Distance to consensus

Plot shows how far away each assessors profile is from the average (across all attributes) MINIMUM = Good MAXIMUM = Bad

Lauren

FIZZ

by

- Making more involved panel performance analyses for a project faster or more efficient
- Post training checks, regular monitoring, etc.
- Several hours evaluation or more
- Examples using PanelCheck, FIZZ and Compusense

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pple ppl base's Green base's Red Idra Delisiass Josep Smilk ab Ladg
C D C C C C C C C C
X2866-6
1
F_Comback sep red re
0 ### 0 #### 0
0
T
- 17 - 17 4 22 - 4 44 14 4 4 4 4 4 4 4 4 4 5 4 5 5 5 5 6 6 6 6
100 - 00 - 00 - 00 - 00 - 00 - 00 - 00
1 Government 1
AD
P 5- 4:-/-
##################################
A
. P DL .L.
-4

FIZZ Judge Performance Graphs

- Fuji
 Gibson's Green
 Golden Deliciou
 Granny Smith
- Granny SmithJohnson's Red
- Pink LadyRoyal Gala
- Sun GoldTop Red

- Judge 1's results are shown by the coloured circles on the plot
- These grow in size depending upon the statistical significance of the result
- Each coloured circle is a sample
- The location on the x- and y-axes shows the range and the mean score for each sample
- We can see that this judge often has a range of over 20 (5/10 samples) but that they are able to differentiate the samples for this attribute. The mean score/x-axis also helps.

FIZZ Judge Performance Graphs

- We can add in the panel's results as shown by the coloured squares
- These grow in size depending upon the statistical significance of the result
- Each coloured circle or square is a sample the colours match so we can compare judge 1's sample placement to the whole panel
- So we can see the same information about Judge 1 (replicate range, sample discrimination) but also how this compares to the panel as a whole.

Performance indices in PanelCheck

Food Quality and Preference 28 (2013) 122-133

Contents lists available at SciVerse ScienceDirect

Food Quality and Preference

Performance indices in descriptive sensory analysis – A complimentary screening tool for assessor and panel performance

Oliver Tomic a,*, Ciaran Forde b, Conor Delahunty c, Tormod Næs a

^a Nofima, Osloveien 1, 1430 Ås, Norway

^bNestle Research Center, Lausanne, Switzerland

^cCSIRO Food and Nutritional Sciences, Sydney, Australia

Assessors	1	2	3	4	5	6	7	8	9	10	11	12	PANEL	PANEL STD
AGR products	77.3	81.6	76.8	77.7	76.3	65.6	77.7	66.6	84.8	83.5	81.2	77.3	77.2	5.9
AGR attributes	90.7	74.4	86.7	85.7	57.1	83.2	81	76.7	75.4	89.6	83	86.8	80.9	9.2
REP samples	54.1	71	52.3	58.2	79.9	71.5	48.2	68.5	61.2	64.3	64	93.9	65.6	12.7
REP attributes	87.5	72.4	68	81.1	85.3	84	80.4	86.7	85.1	68.2	84.1	87	80.8	7.2
DIS rel tot	40	50	35	30	40	30	45	55	35	40	35	65	42.0	10.5
DIS rel panel-1	47.1	62.5	43.8	37.5	42.1	35.3	52.9	64.7	41.2	50	46.7	76.5	50.0	11.7
		VERY										VERY		
		GOOD										GOOD		
# sign individ	8	10	7	6	8	6	9	11	7	8	7	13	17	out of 20
# sign panel-1	17	16	16	16	19	17	17	17	17	16	15	17		

Assessors	1	2	3	4	5	6	7	8	9	10	11	12	PANEL	PANEL STD
AGR products	77.3	81.6	76.8	77.7	76.3	65.6	77.7	66.6	84.8	83.5	81.2	77.3	77.2	5.9
AGR attributes	90.7	74.4	86.7	85.7	57.1	83.2	81	76.7	75.4	89.6	83	86.8	80.9	9.2
REP samples	54.1	71	52.3	58.2	79.9	71.5	48.2	68.5	61.2	64.3	64	93.9	65.6	12.7
REP attributes	87.5	72.4	68	81.1	85.3	84	80.4	86.7	85.1	68.2	84.1	87	80.8	7.2
DIS rel tot	40	50	35	30	40	30	45	55	35	40	35	65	42.0	10.5
DIS rel panel-1	47.1	62.5	43.8	37.5	42.1	35.3	52.9	64.7	41.2	50	46.7	76.5	50.0	11.7
		VERY										VERY		
		GOOD										GOOD		
# sign individ	8	10	7	6	8	6	9	11	7	8	7	13	17	out of 20
# sign panel-1	17	16	16	16	19	17	17	17	17	16	15	17		

REP products

Indicates the degree with which assessor (1-12) agrees with themselves on how products compare across replicates

Demo with PanelCheck

Performance Monitoring"

- Groups around each PC
- Use the handout with the instructions
- The screenshots will be on the slide
- Any questions please just ask
- Some of the LFR staff are on hand to help
- Follow through my clicks...

Providing Immediate Feedback An example using Visual Proportions

FCM Feedback Calibration Method

Immediate Feedback

Round up

- A proposed way of working
- Software
- The ideal panel performance infographic
- Making time for panel performance
- Discussion and Q and A

Faster/easier panel performance

Software

- All packages used today (Senpaq, FIZZ, XLSTAT, PanelCheck, Compusense) can be used for FAST and FASTER panel performance
- Other packages are also available:
 - Senstools, EyeQuestion, JMP, Tragon QDA, etc. . .

- What are existing packages good at?
- What (if anything) is missing?

The ideal panel performance infographic?

- Panellist and panel information
- Repeatability, consistency and discrimination
- All attributes
- In/borderline/out
- Detail of problem areas

Making time for panel performance

- Job roles
- Planning and resource

- Report on panel performance
- Tailored data visualisations and statistics
- Work with your sensory software provider

Thank you

- Jenny Arden for helping set up the demos
- LFR IT: Ian Goulding and Matthew Alcoe for setting up the computers
- Christina Bance for sending out the data set in advance
- LFR staff for helping set up the room

Discussion/Q and A

- How important is it to you that performance checks are fast?
- What do <u>you</u> need to check the quality of data/panel performance?
- What are existing software packages good at?
- What (if anything) is missing?