

Challenges for increasing crop productivity: Farmer & scientist solutions

by

Pete Berry: Head of ADAS Crop Physiology

www.adas.co.uk

Background

- Increasing demand for food, feed
 & fuel
- Requirement for smaller environmental impact
- Stagnating crop yields in many countries

Stagnating yields

- Wheat yields stagnating in several countries:
- UK: Berry *et al.* 2011
- France; Brisson et al. 2010
- Denmark: Peterson et al. 2009
- Finland: Peltonen-Sainio *et al.* 2010

UK potential growth

Water conversion: Light conversion (PAR): 5 g DM litre⁻¹ 2.8 g DM MJ⁻¹

Climate change may constrain yield

Effect of climate change to 2080 on Production Potential of Rain-fed Cereals http://www.iiasa.ac.at/Research/LUC/GAEZ/index.htm

Target resources for 15 t/ha wheat

- Grain yield (15% moisture)
- Total biomass
 - @ 60% harvest index
- Water for transpiration
 @ 5 g DM litre⁻¹
- Fertiliser N current technology
 - 11.5% grain protein (feed wheat)
 - 60% fertiliser N recovery

21 t/ha

15 t/ha

430 mm

430 kg/ha

170mm

0.5m

1.0m

1.5m

+60mm

Rooting for 15 t/ha wheat

Summer crop water demand

- Minimum in summer for 15 t/ha grain 430 mm
- Losses ... soil evaporation 20 mm

Summer shortfall

- Average rain220 mm
- Extra requirement from soil
 230 mm

Soil water storage

- Capacity *per metre* ~180 mm
- Current water capture norm ... ? 170 mm
 = 99% roots reaching ~1.2 metres
- New requirement
 230 mm
 99% roots need to reach 1.8 m .. 0.6 m extra

Alternatives:

– Irrigation .. or .. GO WEST !

Soil compaction

- Soil compaction from heavier machinery
 - Increasing penetrometer resistance from 1 to 3 MPa reduced growth by 5 t/ha

Restricted rooting

- Reduced water uptake
- Reduced nutrient uptake efficiency
- Water logging
 - 44-58 days water logging overwinter reduced yield by 20-24%

High yields need large nutrient supplies

Wheat Nitrogen requirements

- Crop N demand
- Crop N demand @ 15 t/ha grain
- Normal soil N supply
- Crop N from fertiliser
- Fertiliser N requirement at ~60% N recovery
- Current N fertiliser rate

- 23 kg/tonne grain
- = 340 kg/ha
 - 80 kg/ha
- = 260 kg/ha
- = 430 kg/ha
- = 190 kg/ha

High yields need large nutrient supplies

Wheat Nitrogen requirements

- Crop N demand
- Crop N demand @ 15 t/ha grain
- Normal soil N supply
- Crop N from fertiliser
- Fertiliser N requirement at ~60% N recovery
- Current N fertiliser rate

Phosphorus requirements

- Crop P demand .. grain
- Chaff, straw & stubble P
- Crop P demand when yielding 15 t/ha grain
- Fertiliser P₂O₅ to maintain soil P (straw incorp.)
- Current P₂O₅ fertiliser rate

23 kg/tonne grain

- = 340 kg/ha
 - 80 kg/ha
- = 260 kg/ha
- = 430 kg/ha
- = 190 kg/ha

as P_2O_5

- 7.8 kg/tonne grain
- 1.3 kg/tonne grain
- = 137 kg/ha
- = 117 kg/ha
- = 60 kg/ha

Weeds, disease & pests

- All
 - Pesticide insensitivity
 - Loss of active substances
- Weeds
 - Predict weed dynamics through rotation
 & effect of cultural controls
- Diseases
 - Durable genetic resistance
 - Take-all, eyespot, light leaf spot
- Pests
 - Sources of genetic resistance/tolerance

Priority challenges

- Prolong yield forming period
- Increase photosynthetic efficiency
- Improve water capture & use efficiency
- Improve nutrient use efficiency
- Protect against weeds, disease, pests

Solutions: Genetics?

Berry *et al.,* 2011 Mackey *et al.*, 2011

Biotechnology &	Chemistry	Engineering & IT	Farm systems &
plant breeding			management

	Biotechnology & plant breeding	Chemistry	Engineering & IT	Farm systems & management
Prolong seed fill Adapt to warming	Modify day length & temp. responses Frost tolerance	Growth hormones to delay maturity Prolonged nutrition	Machinery for early sowing	Logistics for early sowing
Greater photosynthesis	Enhance rubisco	Prolonged nutrition		

	Biotechnology & plant breeding	Chemistry	Engineering & IT	Farm systems & management
Prolong seed fill Adapt to warming	Modify day length & temp. responses Frost tolerance	Growth hormones to delay maturity Prolonged nutrition	Machinery for early sowing	Logistics for early sowing
Greater photosynthesis	Enhance rubisco	Prolonged nutrition		
Water capture	Greater rooting at depth	More roots using growth stimulators	Soil management and irrigation	Rain harvesting & water storage
Water conversion	Greater harvest index High photosynthesis	Fungicides Anti-transpirants		Wind breaks

	Biotechnology & plant breeding	Chemistry	Engineering & IT	Farm systems & management
Prolong seed fill Adapt to warming	Modify day length & temp. responses Frost tolerance	Growth hormones to delay maturity Prolonged nutrition	Machinery for early sowing	Logistics for early sowing
Greater photosynthesis	Enhance rubisco	Prolonged nutrition		
Water capture	Greater rooting at depth	More roots using growth stimulators	Soil management and irrigation	Rain harvesting & water storage
Water conversion	Greater harvest index High photosynthesis	Fungicides Anti-transpirants		Wind breaks
Nutrient capture	Greater active nutrient uptake and greater rooting	Inhibit nutrient losses, fertiliser formulation	Soil, seed and foliar targeting Precision appln.	Rotation design; sowing methods
Nutrient conversion	Reduce nutrient storage in crops			End-use quality requirement

	Biotechnology & plant breeding	Chemistry	Engineering & IT	Farm systems & management
Prolong seed fill Adapt to warming	Modify day length & temp. responses Frost tolerance	Growth hormones to delay maturity Prolonged nutrition	Machinery for early sowing	Logistics for early sowing
Greater photosynthesis	Enhance rubisco	Prolonged nutrition		
Water capture	Greater rooting at depth	More roots using growth stimulators	Soil management and irrigation	Rain harvesting & water storage
Water conversion	Greater harvest index High photosynthesis	Fungicides Anti-transpirants		Wind breaks
Nutrient capture	Greater active nutrient uptake and greater rooting	Inhibit nutrient losses, fertiliser formulation	Soil, seed and foliar targeting Precision appln.	Rotation design; sowing methods
Nutrient conversion	Reduce nutrient storage in crops			End-use quality requirement
Control of pest, weeds, disease	Resistance to & tolerance of pest	Durable pesticides	Monitoring & forecasting	Rotations, crop choice

Farmer / scientist partnerships

- Farmer/Scientist interaction required to identify constraints & solutions
- Much innovation occurs on farms
 E.g. engineering & farm systems
- Initiatives required to stimulate interaction, innovation and knowledge exchange

Yield Enhancement Network

Aims:

To identify Arable Innovators

and

Support their innovating

First year, 2013:

Cereal Yield Contest ... open to anyone

- Highest Grain Yield
- Highest % of Potential Yield

Ultimately ...

A platform for industry-research synergy

Summary

 Climate change may make high yields harder to achieve

Key challenges

- Prolong yield forming period & rate of photosynthesis
- Water: capture more & use efficiently
- Nutrient use efficiency
- Protect against weeds, disease, pests

Solutions

- Genetics, chemistry, engineering, systems
- Farmers & scientists must interact

High yields require innovation

- Investment & Risk
- Foster a more experimental culture

Thank you