

Harper Adams University

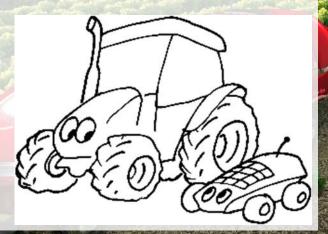
Robotic Potential for Food Production

Prof Simon Blackmore Head of Engineering <u>simon.blackmore@harper-adams.ac.uk</u> <u>www.harper-adams.ac.uk</u> Director of the National Centre for Precision Farming <u>NCPF.harper-adams.ac.uk</u> Project manager of FutureFarm <u>www.FutureFarm.eu</u>

Farming in 2050

- Identify trends in the past that are true today and carry through to the future
- Identify weaknesses in current system
 - Is big always good? Highest yield gives highest profit?
 - Can tractors be twice the size in the next ten years?
- Assumptions
 - Sustainable food supply in changing conditions
 - Improve farm economic viability
 - Desire to have less environmental impact
 - Tighter legislation from EU and UK
 - Energy prices increase
 - More volatile weather due to climate change
 - More competition from world food prices
- UK agriculture must become more flexible and efficient

Current farming system


- Industrial production line
 - Maximum crop production after the war
 - Large tractors doing the same work everywhere
 - Cheap energy
- Flexible manufacturing
 - React to changes in real-time based on current conditions
 - Weather, growth, prices, legislation, incentives
 - Information intensive

Current size

- Mechanisation getting bigger all the time
 - Due to driver costs
 - Doubling work rates keeps costs down
 - Reaching maximum size
 - Combines are now at maximum size that can fit inside a railway tunnel for transport
 - Good for large fields
 - Small working window needs a bigger machine but the bigger the machine the smaller the working window.
 - Self fulfilling prophecy
 - Horsepower does not help when weight is the problem
 - We cannot change the weather but we can change the tractor

Farming with robots

- Keeping seeds, sprays, fertiliser etc. the same
- Remove machine constraints
- Focus on plant needs
- Farm Management Information System
- Large manned tractors for large harvesting logistics
- Four stages
 - Crop establishment
 - Crop scouting
 - Crop care
 - Selective harvesting

Robotic seeder

- Ultra light, very low draught force
 - No agronomic compaction
 - Put seed into the ground in any weather
- Micro tillage
 - Cultivate for each individual seed position
- Permanent planting positions
 - Same place each year
- Use vertical or rotary seeding methods
 - Punch planting
- Seeding depth to moisture
 - Improve germination rates

Ultra light seeding robot

- Less than 40kPa (6PSI) under the contact patch does no agronomic damage even at field capacity
- Can seed the ground in any weather conditions

Current system: Compaction

- Up to End is the machi
- Up to tyres
- If we do
- Move -

1 ha area
mulch-laying machine
stubble braking
shallow tillage
seeding
harvest
grains disposal
spraying rows

100

50

Optimised route planning

Image © 2012 Getmapping ple

Crop scouting

- Working with agronomists by giving near-real-time data over the whole farm
- UGVs (Unmanned Ground Vehicle)
 - Phenotyping robots
 - Crop trials to evaluate new genotypes
 - Scouting robots
 - Targeted agronomic measurements
- UAVS (Unmanned Aerial Vehicle NCPF seminar 30th Jan)
 - Rapid assessment technique
 - High resolution imagery
 - Visible: Crop cover, growth rates, flooding extent, late emergence, weed patches, rabbit damage, nutrient imbalance
 - Non-visible: NDVI, Thermal, multispectral
 - Sensor limited by weight and power

Dionysus robot

- Crop scouting robot for vineyards
- Build by Harper Adams MEng (2013) students for the University of Athens
- Software Architecture for Agricultural Robots
- Thermal camera for irrigation status
- Multispectral camera for nutrient status
- LIDAR for canopy extent and density

Unmanned aerial vehicle

- Bespoke hexacopter
- Live video feed
- 3 axis gimbals
- 20 minute flight time
- Developing a quad microcopter

Robotic Weeding

- Mechanical weeding
- Micro droplet spraying
- Laser weeding

The Royal Veterinary and Agricultural University

Intra-row Weeding with a Cycloid Hoe

Denmark, May 2006

Robotti

UNIVERSITY OF SOUTHERN DENMARK

MicroDot spraying

- Machine vision recognises the leaves of the plant in real time and records the position and speed
- MicroDot sprayer puts chemical only on the leaf of the plant saving
 99.99% by volume

Laser weeding

- Machine vision recognises the growing point of the weed
- Laser kills the weed by heating the growing point
- Saving 100% herbicide

- Harper Adams University is now building a real-time robot to laser and microdot weeds
- Funded by a major agrochemical company 2014-2017

Selective harvesting

- Up to 60% of harvested crop is not of saleable quality
- Only harvest that part of the crop which has 100% saleable characteristics
 - Phased harvesting
- Pre harvest quality and quantity assessment
 - Grading / packing / sorting at the point of harvest
 - Add value to products on-farm
 - Grade for quality
 - Size, sweetness, ripeness, shelf life, protein etc
 - Minimise off farm grading and sorting
 - Add value to on-farm products

Conclusions

- Is this the future?
- We can use these technologies now
- All of these concepts have been developed and initially researched
- Not many of them are commercially available through "lack of demand"
- How long will it be before UK farmers take advantage of these new opportunities?

Autonomous tractors in China

