Salmonella and Food Safety: Current and Future Strategies

Steven C. Ricke

Director of the Center for Food Safety Wray Endowed Chair in Food Safety Dept. of Food Science

Salmonella - Why Do We Care?

• Infection and disease in humans

- Mortalities
- Cost \$billions each year

Presence in animals

- Birds as carriers
- Survivability in animal environments
- Multiple serovars

• Prevalence and predictability

- Multiple antimicrobial resistance capability
- Prevalence, pathogenesis & survivability = complex problem

Our view on food safety: Egg recalls fit pattern of negligence, lax oversight

Here we go again. With the massive recall by two farms in lowa, eggs now join spinach, hamburger and peanuts on a list of things you thought you could eat without worry but now might have doubts about. Salmonella Can be Present at all Stages of Food Production = Environment Interface

What makes Salmonella pathogenic?

– Pathogenicity = Ability to cause disease in the host

- Virulence = Potency of infection (direct and indirect factors)
- Virulence genes = Anything in the bacterial genome associated with pathogenesis: Attachment, invasion, toxins, and survival
- Complex = Need more comprehensive genetics

Sequencing the Salmonella Genome

- **Good news:** Completed for more and more *Salmonella* serotypes
- **Bad news:** Potential information is overwhelming!!
- How do we use this tool kit for the food industry?
 - Functional genomics: Identifying essential genes with unique functions for establishment in food production environments
 - Tracking and detection: Comparing sequences among isolates from isolates
 - Quantifying gene expression to understand antimicrobial cross protection

Tracking pathogens

Prescreen method

full sequencing approach

Quantifying Gene Expression: Transcriptional profiling of pathogens

red/green **Transcriptional Profiling Overview** Control **cDNA** RNA Hybridization of **Fluorescently** labeled probes on Labeled cDNA Probes microarray slide Test **Data analysis**

RNA extraction from samples

Application of microarray analysis of foodborne *Salmonella* **in poultry production: A review.** S.C. Ricke , A. Khatiwara , and Y.M. Kwon. 2013. Poultry Science 92 :2243–2250.

Data analysis Identification of differentially expressed genes

Measurement of Fluorescence in 2 channels

Application of microarray analysis of foodborne *Salmonella* **in poultry production: A review.** S.C. Ricke , A. Khatiwara , and Y.M. Kwon. 2013 Poultry Science 92 :2243–2250.

Quantifying Genes for Cross-Protection Potential in Salmonella to Interventions A, B, or C Extensive Cross protection = Not good

No Cross protection = Optimal

Genomic Studies - Applications for Food Products

- Sudden shifts in pH may increase S. Typhimurium virulence level in a food matrix
 - -How long? -Acid type

Journal of Applied Microbiology Journal of Applied Microbiology ISSN 1364-5072
ORIGINAL ARTICLE
Effect of sublethal heat stress on <i>Salmonella</i> Typhimurium virulence
S.A. Sirsat ¹ *, K.M. Burkholder ² †*, A. Muthaiyan ³ , S.E. Dowd ⁴ , A.K. Bhunia ² and S.C. Ricke ³

- Thermal interaction with virulence should be considered
- Chemical composition of food products before and after physical processing may be a factor in virulence response

Growth and transcriptional response of *Salmonella* Typhimurium LT2 to glucose–lysine-based Maillard reaction products generated under low water activity conditions. V. I. Chalova, O. Hernández-Hernández, A. Muthaiyan, S.A. Sirsat, S. Natesan, M. L. Sanz, F. J. Moreno, C. A. O'Bryan, P. G. Crandall, S.C. Ricke. **2012.** Food Res. International. 45: 1044-1053.

Future: How Do We Use The Results? Examples for Application of *Salmonella* Genomics

- Cost effective control measures = High throughput screening for designing optimal multiple hurdles with minimal cross protection

- Improvement of detection technologies: Achieve "real time" assessment

-Impact of *Salmonella "in situ"* status: Designing interventions based on metabolic state in the environment

Thank You

United States Department of Agriculture

National Institute of Food and Agriculture